Abstract:
A multi-bit flip-flop includes: a single scan input pin to receive a scan input signal, a plurality of data input pins to receive first and second data input signals, a first scan flip-flop to select one of the scan input signal and the first data input signal as a first selection signal in response to a scan enable signal and to latch the first selection signal to provide a first output signal, a second scan flip-flop to select one of an internal signal corresponding to the first output signal and the second data input signal as a second selection signal in response to the scan enable signal and to latch the second selection signal to provide a second output signal, and a plurality of output pins to output the first and second output signals, wherein scan paths of the first and second scan flip-flops are connected to each other.
Abstract:
A multi-bit flip-flop includes a plurality of multi-bit flip-flop blocks that share a clock signal. Each of the multi-bit flip-flop blocks includes a single inverter and a plurality of flip-flops. The single inverter generates an inverted clock signal by inverting the clock signal. Each of the flip-flops includes a master latch part and a slave latch part and operates the master latch part and the slave latch part based on the clock signal and the inverted clock signal. Here, the flip-flops are triggered at rising edges of the clock signal. Thus, the multi-bit flip-flop operating as a master-slave flip-flop may minimize (or, reduce) power consumption occurring in a clock path through which the clock signal is transmitted.
Abstract:
A memory device includes: a memory cell region; a peripheral circuit region; a memory cell array; a control logic circuit; and a row decoder. The row decoder is configured to activate string selection lines based on control of the control logic circuit. A program interval is formed between a first program operation and a second program operation. The control logic circuit includes a reprogram controller configured to control the row decoder so that a program interval differs in the memory cells connected to different string selection lines among the memory cells connected to a first wordline.
Abstract:
A memory device includes: a memory cell array; a control logic circuit; and a row decoder. The row decoder is configured to activate string selection lines based on control of the control logic circuit. A program interval is formed between a first program operation and a second program operation. The control logic circuit includes a reprogram controller configured to control the row decoder so that a program interval differs in the memory cells connected to different string selection lines among the memory cells connected to a first wordline.
Abstract:
A flip-flop generates a first feedback signal using a signal generated inside the flip-flop. The flip-flop includes a first stage circuit, a second stage circuit and a third stage circuit. The first stage circuit receives a first data signal and a clock signal and generates a first internal signal through a first node. The second stage circuit receives the first internal signal, the clock signal, and the first feedback signal and generates a second internal signal through a second node. The third stage circuit generates a second data signal by latching the second internal signal when the clock signal is at a first level, using the second internal signal and the clock signal. The second stage circuit cuts off at least one first current path between the second node and a power supply, based on the first feedback signal, when the clock signal is at a second level.
Abstract:
An integrated circuit and an electronic apparatus including the same. The electronic apparatus includes a scan input processing circuit, a selection circuit and a scanning circuit. The scan input processing unit is configured to output one of a scan input and a first logical value in response to a scan enable signal. The selection unit is configured to select one of an output of the scan input processing unit or a data input in response to the scan enable signal. The scan element comprises a flip-flop configured to store an output of the selection unit.
Abstract:
An integrated circuit includes a complex logic cell. The complex logic cell includes a first logic circuit providing a first output signal from a first input signal group and a common input signal group, and a second logic circuit providing a second output signal from a second input signal group and the common input signal group. The first and second logic circuits respectively include first and second transistors formed from a gate electrode, the gate electrode extending in a first direction and receiving a first common input signal of the common input signal group.
Abstract:
An unbalanced multiplexer and a scan flip-flop including the unbalanced multiplexer, wherein the unbalanced multiplexer includes a first transmission circuit transmitting a first input signal to an output terminal according to a logic state of a selection signal; and a second transmission circuit transmitting a second input signal to the output terminal according to the logic state of the selection signal. A delay characteristic of a first transmission path from a first input terminal to the output terminal along which the first input signal of the first transmission circuit is transmitted, and a delay characteristic of a second transmission path from a second input terminal to the output terminal along which the second input signal of the second transmission circuit is transmitted, are set differently.
Abstract:
A memory device includes: a memory cell array; a control logic circuit; and a row decoder. The row decoder is configured to activate string selection lines based on control of the control logic circuit. A program interval is formed between a first program operation and a second program operation. The control logic circuit includes a reprogram controller configured to control the row decoder so that a program interval differs in the memory cells connected to different string selection lines among the memory cells connected to a first wordline.
Abstract:
An integrated circuit includes a complex logic cell. The complex logic cell includes a first logic circuit providing a first output signal from a first input signal group and a common input signal group, and a second logic circuit providing a second output signal from a second input signal group and the common input signal group. The first and second logic circuits respectively include first and second transistors formed from a gate electrode, the gate electrode extending in a first direction and receiving a first common input signal of the common input signal group.