Abstract:
[Solving Means] A tactile sense presentation apparatus includes a movable body, an actuator unit, and a signal generation unit. The actuator unit is connected to the movable body. The signal generation unit is configured to supply a driving signal to the actuator unit, the driving signal generating a vibration on the actuator unit, the vibration having within a period at least one of a plurality of different amplitudes and a plurality of different frequencies.
Abstract:
[Solving Means] A tactile sense presentation apparatus includes a movable body, an actuator unit, and a signal generation unit. The actuator unit is connected to the movable body. The signal generation unit is configured to supply a driving signal to the actuator unit, the driving signal generating a vibration on the actuator unit, the vibration having within a period at least one of a plurality of different amplitudes and a plurality of different frequencies.
Abstract:
There is provided an optical amplifier including a diffusing unit configured to be driven by a first current density and to increase a beam diameter of an incident laser beam that passes through a first waveguide that guides the laser beam, and an amplifying unit configured to be driven by a second current density that is higher than the first current density and to amplify intensity of the laser beam that passes through a second waveguide that guides the laser beam whose beam diameter has been increased by the diffusing unit. The first waveguide of the diffusing unit has a tapered shape in which a cross-sectional area of the first waveguide is gradually increased toward a travelling direction of the laser beam.
Abstract:
[Object] To acquire distance information concerning a living tissue through an endoscope with higher accuracy irrespective of the diameter of the endoscope. [Solution] An imaging device according to the present disclosure includes: a ranging light source section configured to output ranging light for measuring a distance at a predetermined timing; an image sensor on which an image of the imaging target is formed; a ranging light image sensor on which optical feedback of the ranging light from the imaging target is imaged; a branch optical system configured to coaxially branch incident light into three types of optical paths different from one another; and a distance information calculating section configured to calculate distance information concerning the imaging target on a basis of a result of detection of the optical feedback. In the branch optical system, a first optical path among the three types of optical paths is used as an optical path configured to guide the ranging light whose applied position on the imaging target has been controlled to the imaging target, a second optical path is used as an optical path configured to form an image of the imaging target on the image sensor, and a third optical path is used as an optical path configured to image the optical feedback on the ranging light image sensor. The distance information calculating section calculates a spaced distance to the imaging target by a Time Of Flight method on the basis of the result of detection of the optical feedback.
Abstract:
A light receiving/emitting element 11 includes: a light receiving/emitting layer 21 in which a plurality of compound semiconductor layers are stacked; and an electrode 30 having a first surface 30A and a second surface 30B and made of a transparent conductive material, in which the second surface faces the first surface 30A, and the electrode is in contact, at the first surface 30A, with the light receiving/emitting layer 21. The transparent conductive material contains an additive made of one or more metals, or a compound thereof, selected from the group consisting of molybdenum, tungsten, chromium, ruthenium, titanium, nickel, zinc, iron, and copper, and concentration of the additive contained in the transparent conductive material near an interface to the first surface 30A of the electrode 30 is higher than concentration of the additive contained in the transparent conductive material near the second surface 30B of the electrode 30.
Abstract:
A tactile sense presentation apparatus includes a movable body, an actuator unit, and a signal generation unit. The actuator unit is connected to the movable body. The signal generation unit is configured to supply a driving signal to the actuator unit, the driving signal generating a vibration on the actuator unit, the vibration having within a period at least one of a plurality of different amplitudes and a plurality of different frequencies.
Abstract:
A tactile sense presentation apparatus includes a movable body, an actuator unit, and a signal generation unit. The actuator unit is connected to the movable body. The signal generation unit is configured to supply a driving signal to the actuator unit, the driving signal generating a vibration on the actuator unit, the vibration having within a period at least one of a plurality of different amplitudes and a plurality of different frequencies.
Abstract:
There is provided an optical amplifier including a diffusing unit configured to be driven by a first current density and to increase a beam diameter of an incident laser beam that passes through a first waveguide that guides the laser beam, and an amplifying unit configured to be driven by a second current density that is higher than the first current density and to amplify intensity of the laser beam that passes through a second waveguide that guides the laser beam whose beam diameter has been increased by the diffusing unit. The first waveguide of the diffusing unit has a tapered shape in which a cross-sectional area of the first waveguide is gradually increased toward a travelling direction of the laser beam.
Abstract:
There is provided a multi-junction solar cell that reduces contact resistance of a junction portion and is capable of performing energy conversion with high efficiency. The multi-junction solar cell includes a plurality of sub-cells 11, 12, 13, and 14 that are laminated, the plurality of sub-cells 11, 12, 13, and 14 being configured of a plurality of compound semiconductor layers 11A, 11B, 11C, 12A, 12B, 12C, 13A, 13B, 13C, 14A, 14B, and 14C that are laminated. Amorphous connection layers 20A and 20B made of electrically-conductive material are provided in at least one place between the sub-cells 12 and 13 adjacent to each other.
Abstract:
[Solving Means] A tactile sense presentation apparatus includes a movable body, an actuator unit, and a signal generation unit. The actuator unit is connected to the movable body. The signal generation unit is configured to supply a driving signal to the actuator unit, the driving signal generating a vibration on the actuator unit, the vibration having within a period at least one of a plurality of different amplitudes and a plurality of different frequencies.