Abstract:
A reversible converter includes a first field effect transistor and a second field effect transistor coupled in series between a first terminal and a second terminal for a DC voltage. A first thyristor and a second thyristor are coupled in series between the first and second terminals for the DC voltage. A third thyristor and a fourth thyristor are also coupled in series between the first and second terminals for the DC voltage terminals, but have an opposite connection polarity with respect to the first and second thyristors. A midpoint of connection between the first and second field effect transistors and a common midpoint of connection between the first and second thyristors and the third and fourth thyristors are coupled to AC voltage terminals. Actuation of the transistors and thyristors is controlled in distinct manners to operate the converter in an AC-DC conversion mode and a DC-AC conversion mode.
Abstract:
A circuit for balancing a voltage across a semiconductor element series-connected with other semiconductor elements of the same type may include a comparator configured to compare data representative of a voltage across the semiconductor element with a reference voltage, and a resistive element of adjustable value and configured to be controlled by the comparator.
Abstract:
The present disclosure relates to a transient voltage suppression device comprising a single crystal semiconductor substrate doped with a first conductivity type comprising first and second opposing surfaces, a semiconductor region doped with a second conductivity type opposite to the first conductivity type extending into the substrate from the first surface, a first electrically conductive electrode on the first side contacting the semiconductor region and a second electrically conductive electrode on the second side contacting the substrate, a first interface between the substrate and the semiconductor region forming the junction of a TVS diode and a second interface between the first electrically conductive electrode and the semiconductor region or between the substrate and the second electrically conductive electrode forming the junction of a Schottky diode.
Abstract:
A circuit for balancing a voltage across a semiconductor element series-connected with other semiconductor elements of the same type may include a comparator configured to compare data representative of a voltage across the semiconductor element with a reference voltage, and a resistive element of adjustable value and configured to be controlled by the comparator.
Abstract:
A circuit is for balancing currents flowing through a parallel assembly of semiconductor components of the same type. The circuit may include a respective regulation circuit for each semiconductor component. Each regulation circuit may include a comparator of a first signal representative of the current flowing through the component with a reference signal, and a resistive element of a changeable resistance and controlled by the comparator.
Abstract:
The present disclosure relates to a transient voltage suppression device comprising a single crystal semiconductor substrate doped with a first conductivity type comprising first and second opposing surfaces, a semiconductor region doped with a second conductivity type opposite to the first conductivity type extending into the substrate from the first surface, a first electrically conductive electrode on the first side contacting the semiconductor region and a second electrically conductive electrode on the second side contacting the substrate, a first interface between the substrate and the semiconductor region forming the junction of a TVS diode and a second interface between the first electrically conductive electrode and the semiconductor region or between the substrate and the second electrically conductive electrode forming the junction of a Schottky diode.
Abstract:
A circuit is for balancing currents flowing through a parallel assembly of semiconductor components of the same type. The circuit may include a respective regulation circuit for each semiconductor component. Each regulation circuit may include a comparator of a first signal representative of the current flowing through the component with a reference signal, and a resistive element of a changeable resistance and controlled by the comparator.