Abstract:
A device for measuring an electrical impedance of biologic tissue may include electrodes configured to contact the biologic tissue and generate a differential voltage thereon. The device may include a first circuit coupled to the electrodes and configured to force an oscillating input signal therethrough, and a differential amplitude modulation (AM) demodulator coupled to the plurality of electrodes. The differential AM demodulator may be configured to demodulate the differential voltage, and generate a base-band signal representative of the demodulated differential voltage. The device may further include an output circuit downstream from the differential AM demodulator and may be configured to generate an output signal representative of the electrical impedance as a function of the base-band signal.
Abstract:
A device for monitoring breathing activity of, e.g., athletes while exercising includes a breathing activity sensor configured to be worn by a wearer and to provide a breathing activity signal indicative of the breathing activity of the wearer. A motion sensor is configured to be worn by the wearer and to provide a motion signal indicative of the motion activity of the wearer. A processing arrangement is coupled to the breathing activity sensor to process the breathing activity signal and produce a processed breathing activity signal. The processing arrangement includes filter circuitry having a first filtering bandwidth and a second filtering bandwidth. The first filtering bandwidth is larger than the second filtering bandwidth. The filter circuitry is coupled to the motion sensor and operates with one of the first filtering bandwidth and the second filtering bandwidth selected as a function of the motion signal from the motion sensor.
Abstract:
A device for monitoring breathing activity of, e.g., athletes while exercising includes a breathing activity sensor configured to be worn by a wearer and to provide a breathing activity signal indicative of the breathing activity of the wearer. A motion sensor is configured to be worn by the wearer and to provide a motion signal indicative of the motion activity of the wearer. A processing arrangement is coupled to the breathing activity sensor to process the breathing activity signal and produce a processed breathing activity signal. The processing arrangement includes filter circuitry having a first filtering bandwidth and a second filtering bandwidth. The first filtering bandwidth is larger than the second filtering bandwidth. The filter circuitry is coupled to the motion sensor and operates with one of the first filtering bandwidth and the second filtering bandwidth selected as a function of the motion signal from the motion sensor.
Abstract:
A method and apparatus for compensating and calibrating a bio-impedance measurement device are provided. In the method and apparatus, a memory stores a plurality of compensation parameters and a first detection channel receives a first detection signal, compensates the first detection signal using a first compensation parameter of the plurality of compensation parameters. In the method and apparatus, a second detection channel receives a second detection signal and a third detection signal and compensates the second and third detection signals using second and third compensation parameters of the plurality of compensation parameters and the compensated first detection signal. The impedance measurement device generates a first output signal representative of a first impedance measurement and a second output signal representative of a second impedance measurement based on the compensated first, second and third detection signals.
Abstract:
A wearable sensing device includes a connector socket provided with contact pads connectable to sensing electrodes for sensing biological electrical signals. A supply module is provided with a battery, which is housed in a first casing configured for reversible coupling with the connector socket. A control module is housed in a second casing distinct from the first casing and configured for coupling with the supply module and with the connector socket. The control module is equipped with a processing unit configured to process biological electrical signals detectable through the contact pads. Mechanical-connection members couple the supply module to the connector socket. Electrical-connection members distinct from the mechanical-connection members are configured to connect the battery and the contact pads to the control module.
Abstract:
A device for measuring impedance of biological tissue may include electrodes and a voltage-to-current converter coupled to the electrodes to drive an alternating current (AC) through the tissue and sense an AC voltage. The converter may include an amplifier having first and second inputs and an output, a first voltage divider coupled to the first input, a second voltage divider coupled to the second input, a filter capacitor coupled between the output and the second voltage divider, a current limiting resistor coupled between the second input the second voltage divider, and a bypass capacitor coupled to the second input of the amplifier and in parallel with the resistor. A single-ended amplitude modulation (AM) demodulator may demodulate the AC voltage and generate a corresponding baseband voltage representing the impedance. The device may also include an output circuit to generate output signals representative of DC and AC components of the baseband voltage.
Abstract:
A method and apparatus for compensating and calibrating a bio-impedance measurement device are provided. In the method and apparatus, a memory stores a plurality of compensation parameters and a first detection channel receives a first detection signal, compensates the first detection signal using a first compensation parameter of the plurality of compensation parameters. In the method and apparatus, a second detection channel receives a second detection signal and a third detection signal and compensates the second and third detection signals using second and third compensation parameters of the plurality of compensation parameters and the compensated first detection signal. The impedance measurement device generates a first output signal representative of a first impedance measurement and a second output signal representative of a second impedance measurement based on the compensated first, second and third detection signals.
Abstract:
A method and apparatus for compensating and calibrating a bio-impedance measurement device are provided. In the method and apparatus, a memory stores a plurality of compensation parameters and a first detection channel receives a first detection signal, compensates the first detection signal using a first compensation parameter of the plurality of compensation parameters. In the method and apparatus, a second detection channel receives a second detection signal and a third detection signal and compensates the second and third detection signals using second and third compensation parameters of the plurality of compensation parameters and the compensated first detection signal. The impedance measurement device generates a first output signal representative of a first impedance measurement and a second output signal representative of a second impedance measurement based on the compensated first, second and third detection signals.
Abstract:
A device for measuring an electrical impedance of biologic tissue may include electrodes configured to contact the biologic tissue and generate a differential voltage thereon. The device may include a first circuit coupled to the electrodes and configured to force an oscillating input signal therethrough, and a differential amplitude modulation (AM) demodulator coupled to the plurality of electrodes. The differential AM demodulator may be configured to demodulate the differential voltage, and generate a base-band signal representative of the demodulated differential voltage. The device may further include an output circuit downstream from the differential AM demodulator and may be configured to generate an output signal representative of the electrical impedance as a function of the base-band signal.
Abstract:
A device for measuring impedance of biological tissue may include electrodes and a voltage-to-current converter coupled to the electrodes to drive an alternating current (AC) through the tissue and sense an AC voltage. The converter may include an amplifier having first and second inputs and an output, a first voltage divider coupled to the first input, a second voltage divider coupled to the second input, a filter capacitor coupled between the output and the second voltage divider, a current limiting resistor coupled between the second input the second voltage divider, and a bypass capacitor coupled to the second input of the amplifier and in parallel with the resistor. A single-ended amplitude modulation (AM) demodulator may demodulate the AC voltage and generate a corresponding baseband voltage representing the impedance. The device may also include an output circuit to generate output signals representative of DC and AC components of the baseband voltage.