Abstract:
A binary encoding circuit is for converting at least first and second binary input signals into an output code that includes at least first and second binary output signals. The circuit may include at least one first selection circuit and at least one second selection circuit that are interconnected and comprise transistors that can be activated/deactivated, i.e. made to conduct/not conduct, according to the binary input signals. The circuit makes it possible to generate a binary code that represents the binary number of the binary input signals that are simultaneously asserted. The encoding circuit can act as a static counter, for example.
Abstract:
A semiconductor memory architecture having two memory banks each containing respective memory locations, and for each memory bank, respective circuits for selecting the locations of the bank and respective circuits for reading the data contained in the selected locations of the bank, a structure for the transfer of the data read by the reading circuits associated with the memory banks to data output terminals of the memory, there being a single data-transfer structure assigned selectively to one memory bank at a time and which includes storage for storing the most recent datum read by the reading circuits, and output driver circuits activated selectively in order to transfer the contents of the registers to the data output terminals of the memory, an addressing structure having, for each memory bank, and a respective circuit for the sequential scanning of the memory locations of the bank, operatively connected to the respective circuits for selecting the locations of the memory bank.
Abstract:
A non-volatile latch circuit includes a first, volatile information-storage element; a second, non-volatile information-storage element electrically programmable and associated with the first element; first circuit means activatable for operatively coupling the second element to the first element, the first circuit means being activated for loading into the first element an information stored in the second element. The circuit additionally includes second circuit means associated with the first element for setting the first element in a select state; third circuit means associated with the second element and driven by the first element for selectively enabling the programming of the second element depending on the state of the first element.
Abstract:
A multipurpose interlaced memory device functions in two different modes, synchronous and asynchronous. The memory uses a circuit for detecting address transitions by acting as a synchronous clock of the system for letting the control circuit of the memory device recognize the required access mode by enabling a comparison of the currently input external address with the one stored in the address counters of the two banks of memory cells. The memory device includes a buffer for outputting data. The buffer includes a circuit for pre-charging the output nodes to an intermediate voltage between the voltages corresponding to the two possible logic states, thus reducing noise and improving transfer time.
Abstract:
A multipurpose memory device suitable for a broader range of applications, whether requiring the reading of data in an asynchronous mode with random access (as in a standard memory) or in a synchronous sequential mode with sequential or burst type access, is capable of recognizing the mode of access and the mode of reading that is currently required by the microprocessor. The memory device self-conditions its internal circuitry as a function of such a recognition in order to read data in the requested mode without requiring the use of additional external control signals and/or implying a penalization in terms of access time and reading time compared to those which, for the same fabrication technology and state of the art design, may be attained with memory devices specifically designed for either one or the other mode of operation.
Abstract:
An NROM memory device, wherein the memory cells are provided with charge storage regions of insulating material, such as silicon nitride. The memory device includes a row decoder comprising a plurality of drivers; during programming, a first driver supplies a first voltage having a first value to a selected wordline, while the other drivers are configured so as to supply a second voltage having a second non-zero value, lower than the first value, to the other wordlines. Thereby, the gate-drain voltage drop of the deselected cells is reduced, and thus spurious erasing of the deselected cells connected to the selected bitline is reduced. Consequently, the reliability of the memory device is improved considerably and the life thereof is lengthened, thanks to the reduction in the charge injected into the charge storage region.
Abstract:
An electrically-programmable memory cell programmed by means of injection of channel hot electrons into a charge-storage element capacitively coupled to a memory cell channel for modulating a conductivity thereof depending on a stored amount of charge. A first and a second spaced-apart electrode regions are formed in a semiconductor layer and define a channel region there between; at least one of the first and second electrode regions acts as a programming electrode of the memory cell. A control electrode is capacitively coupled to the charge-storage element. The charge-storage element is placed over the channel to substantially extend from the first to the second electrode regions, and is separated from the channel region by a dielectric layer. The dielectric layer has a reduced thickness in a portion thereof near the at least one programming electrode.