Abstract:
In at least one embodiment, a Geiger-mode avalanche photodiode, including a semiconductor body, is provided. The semiconductor body includes a semiconductive structure and a front epitaxial layer on the semiconductive structure. The front epitaxial layer has a first conductivity type. An anode region having a second conductivity type that is different from the first conductivity type extends into the front epitaxial layer. The photodiode further includes a plurality of gettering regions in the semiconductive structure.
Abstract:
In at least one embodiment, a Geiger-mode avalanche photodiode, including a semiconductor body, is provided. The semiconductor body includes a semiconductive structure and a front epitaxial layer on the semiconductive structure. The front epitaxial layer has a first conductivity type. An anode region having a second conductivity type that is different from the first conductivity type extends into the front epitaxial layer. The photodiode further includes a plurality of gettering regions in the semiconductive structure.
Abstract:
An optoelectronic device with a semiconductor body that includes: a bottom cathode structure, formed by a bottom semiconductor material, and having a first type of conductivity; and a buffer region, arranged on the bottom cathode structure and formed by a buffer semiconductor material different from the bottom semiconductor material. The optoelectronic device further includes: a receiver comprising a receiver anode region, which is formed by the bottom semiconductor material, has a second type of conductivity, and extends in the bottom cathode structure; and an emitter, which is arranged on the buffer region and includes a semiconductor junction formed at least in part by a top semiconductor material, different from the bottom semiconductor material.
Abstract:
An optoelectronic device for detecting radiation, comprising a semiconductor body including: a cathode region delimited by a front surface, having a first conductivity type and including a bottom layer; an anode region having a second conductivity type, which extends in the cathode region starting from the front surface and forms a surface junction with the cathode region; and a buried region having the second conductivity type, which extends within the cathode region and forms a buried junction with the bottom layer. The cathode region further includes a buffer layer, which is arranged underneath the anode region and overlies, in direct contact, the bottom layer. The buffer layer has a doping level higher than the doping level of the bottom layer.
Abstract:
An optoelectronic device for detecting radiation, comprising a semiconductor body including: a cathode region delimited by a front surface, having a first conductivity type and including a bottom layer; an anode region having a second conductivity type, which extends in the cathode region starting from the front surface and forms a surface junction with the cathode region; and a buried region having the second conductivity type, which extends within the cathode region and forms a buried junction with the bottom layer. The cathode region further includes a buffer layer, which is arranged underneath the anode region and overlies, in direct contact, the bottom layer. The buffer layer has a doping level higher than the doping level of the bottom layer.
Abstract:
An optoelectronic device with a semiconductor body that includes: a bottom cathode structure, formed by a bottom semiconductor material, and having a first type of conductivity; and a buffer region, arranged on the bottom cathode structure and formed by a buffer semiconductor material different from the bottom semiconductor material. The optoelectronic device further includes: a receiver comprising a receiver anode region, which is formed by the bottom semiconductor material, has a second type of conductivity, and extends in the bottom cathode structure; and an emitter, which is arranged on the buffer region and includes a semiconductor junction formed at least in part by a top semiconductor material, different from the bottom semiconductor material.
Abstract:
A photodetector includes a Geiger mode avalanche photodiode, which includes a body of semiconductor material, which is delimited by a front surface. The avalanche photodiode further includes: a cathode region having a first type of conductivity, which forms the front surface; and an anode region having a second type of conductivity, which extends in the cathode region starting from the front surface. The photodetector further includes: a dielectric region, arranged on the front surface; a quenching resistor, which extends on the dielectric region, is electrically connected to the anode region, and is laterally spaced apart with respect to the anode region; and an optical-isolation region, which extends through the dielectric region and laterally delimits a portion of the dielectric region, the anode region extending underneath the portion of the dielectric region, the optical-isolation region being moreover interposed between the portion of the dielectric region and the quenching resistor.
Abstract:
The semiconductor integrated device has a conductive region, for example, an external contact pad, configured to be traversed by a current to be measured. A concentrator of magnetic material partially surrounds the conductive region and has an annular shape open at a point defining an air gap area where a sensitive region is arranged, which is electrically conductive and is typically of doped semiconductor material, such as polycrystalline silicon. The device is integrated in a chip formed by a substrate and by an insulating layer, the sensitive region and the concentrator being formed in the insulating layer.