Abstract:
A method and an apparatus for link performance abstraction for a receiver employing Interference-Aware Communications (IAC) technology in a wireless communication system are provided. A method for operating a receiving apparatus for the link performance abstraction in the wireless communication system, includes receiving an Orthogonal Frequency Division Multiplexing (OFDM) over a plurality of spatial layers, splitting and post-processing the received signal based on the spatial layers, deriving a post-processing Signal-to-Interference-plus-Noise Ratio (SINR) of each spatial layer, converting the post-processing SINR of the spatial layers to a Mutual Information per coded Bit (MIB) adaptively tuned based on an instantaneous Interference-to-Signal Ratio (ISR), and estimating a Block Error Rate (BLER) from a mean of the MIB metrics of the spatial layers.
Abstract:
An interference cancellation method and apparatus of user equipment in a cellular communication system is provided. The method includes receiving signals including a desired signal and an interference signal from one or more base stations; determining a maximum likelihood (ML) decision metric to determine a value “l” of a rank indicator (RI), a value “p” of a precoding matrix indicator (PMI), and a value “q” of a modulation (MOD) level of the interference signal; applying a logarithm to the ML decision metric, and applying a maximum-log approximation to a serving data vector and an interference data vector, which are included in the ML decision metric; determining the values of “l,” “p,” and “q” using the applied ML decision metric; and cancelling the interference signal from the received signals using the determined values of “l,” “p,” and “q.”
Abstract:
A method for receiving downlink data by a User Equipment (UE) in a wireless communication system is provided. The method includes checking a transmission parameter related to data transmitted from an interfering cell, determining presence/absence of an interference signal based on the transmission parameter, determining whether to apply Network Assisted Interference Cancellation and Suppression (NAICS) technology based on at least one of the transmission parameter or the presence/absence of the interference signal, and decoding the downlink data depending on whether to apply the NAICS technology.
Abstract:
Provided is an interference cancellation method by a User Equipment (UE) in a cellular communication system. The method includes receiving a signal including a desired signal and an interference signal from at least one base station; determining a universal constellation diagram based on at least one of a transmission parameter of the desired signal and a transmission parameter of the interference signal; blindly detecting an additional transmission parameter of the interference signal using the determined universal constellation diagram; and cancelling the interference signal from the received signal using the detected additional transmission parameter.
Abstract:
A method and an apparatus for measuring a link quality in a wireless communication are provided. The method of a receiver for measuring the link quality in the wireless communication system includes determining a modulation type for each of at least one reception stream received through at least one antenna based on a modulation order and channel information regarding each of signals transmitted from a plurality of transmission antennas, searching for a parameter corresponding to the determined modulation type from a pre-stored parameter table in which parameters for each modulation type are stored, and calculating a channel capacity for each of the at least one reception streams received through the at least one antenna by using the searched parameter.
Abstract:
A method of transmitting data in a wireless communication, by a first Base Station (BS) is provided. The method includes receiving control information including information related to transmission of a Reference Signal (RS) of at least one second BS from the at least one second BS adjacent to the first BS and transmitting data by using a preset method based on the control information when an RS transmission mode of the at least one second BS is different from an RS transmission mode of the first BS.
Abstract:
Methods and apparatuses are provided for controlling a communication device. First data corresponding to at least one first UE and second data corresponding to at least one second UE are superposed at a bit level to generate superposed data. The superposed data is modulated. The modulated data is transmitted to the at least one first UE and the at least one second UE.
Abstract:
Methods and apparatuses are provided for canceling interference at a User Equipment (UE) in a wireless communication system. A signal that includes a desired signal and an interference signal is received from at least one Base Station (BS). A random parameter is generated by projecting a vector of the received signal onto a set of projection vectors. A decision metric is determined using the random parameter. A Traffic to Pilot Ratio (TPR) that minimizes the decision metric with respect to both a transmission mode candidate group of the interference signal and a TPR candidate group of the interference signal is determined. The interference signal is canceled from the received signal using the TPR.
Abstract:
Methods, systems, apparatuses, evolved NodeB (EnBs), User Equipment (UE), and chip sets for all of the same, in cellular communication systems are described. One method for a UE includes receiving a Channel State Information Reference Signal (CSI-RS) transmitted by an eNB according to a pattern in a time-frequency resource grid determined based on the transmission scheme of the eNB, measuring the state of the transmission channel using the CSI-RS, generating channel state information based on the measuring, and transmitting the channel state information as feedback. The UE receives a downlink signal including data and a Cell-specific Reference Signal (CRS) from the eNB and estimates the transmission channel using the CRS and then acquires the data using the estimated channel.