Abstract:
A fuse structure and a method of blowing the same are provided. The fuse structure includes a conductive line on a substrate, first and second vias on the conductive line that are spaced apart from each other, a cathode electrode line that is electrically connected to the first via, an anode electrode line that is electrically connected to the second via, and a dummy pattern that is adjacent at least one of the cathode and anode electrode lines and electrically isolated from the conductive line.
Abstract:
A memory device may include nonvolatile memory cells. A first memory cell of the nonvolatile memory cells may have a first resistance value in a first state and a second memory cell of the nonvolatile memory cells may have a second resistance value less than the first resistance value in a second state. A third memory cell of the nonvolatile memory cells may have a third resistance value less than the first resistance value and greater than the second resistance value in a third state, and a fourth memory cell of the nonvolatile memory cells may have a fourth resistance value less than the third resistance value and greater than the second resistance value in a fourth state.
Abstract:
A semiconductor device is disclosed. The semiconductor device including writing and reading gate electrodes respectively on first and second active regions on a substrate, a first gate insulation pattern between the first active region and the writing gate electrode, a second gate insulation pattern between the second active region and the reading gate electrode, first and second source/drain junction regions in the first and second active regions at sides of the writing and reading gate electrodes, and a connection structure that connects the first and second source/drain junction regions. The first active region has the same conductivity type as the source/drain junction regions. The second active region has a different conductivity type from the source/drain junction regions.
Abstract:
E-fuse devices, and a method of manufacturing the same, include a first metal pattern extending in a first direction to connect a first electrode and a second electrode to each other, a first barrier metal contacting lateral surfaces and a bottom surface of the first metal pattern, and a first capping insulation layer contacting a top surface of the first metal pattern, wherein the first metal pattern includes an exposed region, the first barrier metal or the first capping insulation layer not contacting a top surface or a bottom surface of the exposed region.
Abstract:
An e-fuse test device is provided. The e-fuse test device may include a first transistor, and a fuse array connected to a source/drain terminal of the first transistor. The fuse array may include n fuse groups, each of the fuse groups may include one end, the other end, and m first fuse elements connected in series to each other between the one end and the other end, the one end of each of the fuse groups may be connected to each other, and the other end of each of the fuse groups may be connected to the source/drain terminal of the first transistor, and the n and m are natural numbers that are equal to or larger than two.
Abstract:
The inventive concepts provide semiconductor devices and methods of manufacturing the same. One semiconductor device includes a substrate, a device isolation layer disposed on the substrate, a fin-type active pattern defined by the device isolation layer and having a top surface higher than a top surface of the device isolation layer, a first conductive line disposed on an edge portion of the fin-type active pattern and on the device isolation layer adjacent to the edge portion of the fin-type active pattern, and an insulating thin layer disposed between the fin-type active pattern and the first conductive line. The first conductive line forms a gate electrode of an anti-fuse that may be applied with a write voltage.
Abstract:
An eFuse structure of a semiconductor device may include a first metal formed at a first level on a substrate, a second metal formed at a second level between the first level and the substrate, a third metal formed at a third level between the second level and the substrate, a first via connecting the first metal to the second metal, and a second via connecting the second metal to the third metal. The first metal may include a first portion extending in a first direction, a second portion extending in the first direction and being adjacent to the first portion, and a third portion connecting the first portion to the second portion. A first distance between the first portion and the second portion may be greater than a width of the second portion in a second direction perpendicular to the first direction.
Abstract:
A semiconductor device includes a substrate having a fuse area and a device area; a fuse structure in an insulating layer of the fuse area, and a wire structure in the insulating layer of the device area. The fuse structure includes a fuse via, a fuse line electrically connected to a top end of the fuse via pattern and extending in a direction. The wire structure includes a wire via, a wire line electrically connected to a top end of the wire via and extending in the first direction. A width in the first direction of the fuse via is smaller than a width in the first direction of the wire via.
Abstract:
Provided is an e-fuse structure of a semiconductor device having improved fusing performance so as to enable a program operation at a low voltage. The e-fuse structure includes a first metal pattern formed at a first vertical level, the first metal pattern including a first part extending in a first direction and a second part extending in the first direction and positioned to be adjacent to the first part, and a third part adjacent to the second part, the second part being positioned between the first part and the third part, the first part and the second part being electrically connected to each other, and the third part being electrically disconnected from the second part; and a second metal pattern electrically connected to the first metal pattern and formed at a second vertical level different from the first vertical level.
Abstract:
A method, device, a non-transitory computer-readable recording medium for controlling a voice signal by an electronic device including a first microphone, a second microphone, a communication interface, and a processor are provided. The method includes acquiring a first voice signal by using the first microphone; acquiring a second voice signal by using the second microphone; confirming a telephone call mode for performing, by the electronic device, a telephone call with an external electronic device; adjusting a first output attribute corresponding to the first voice signal or a second output attribute corresponding to the second voice signal, based on the telephone call mode; and transmitting the adjusted first voice signal or the adjusted second voice signal to the external electronic device by using the communication interface.