Abstract:
A method for providing low-complexity hybrid precoding is provided. The method includes identifying a subset of a plurality of precoding sets as a reduced search space. A search is performed over the reduced search space for a preferred precoding set. Identifying the reduced search space may include determining at least one parameter, such as received power, for each of a plurality of beam directions.
Abstract:
Beam-steered millimeter wave signals transmitted in each of n sector slices include a sequence of primary synchronization (PSCH) symbols within predetermined symbol positions in at least one slot of a subframe. The symbols in consecutive symbol positions are each transmitted on a different one of the n slices, with the first symbol repeated on the same slice at the end. The sequence order rotates cyclically in each subframe so that two PSCH symbols are transmitted on one slice in a single subframe every nth subframe. Secondary synchronization (SSCH) and Broadcast Channel (BCH) symbols are transmitted in a predetermined pattern following the sequence of PSCH symbols. By transmitting consecutive PSCH symbols on different slices and repeating the first symbol, the mobile station can detect the best slice and beam by switching receive beams every subframe instead of every slot, relaxing time constraints on AGC adjustment while avoiding the start-at-the-edge problem.
Abstract:
A method for a wireless device capable of receiving and transmitting a signal includes receiving a reference signal from a second wireless device through a communication channel, estimating the communication channel, using the reference signal, selecting a pair of an analogue digital converter (ADC) quantizer and an input distribution, based on the estimated communication channel, and sending information on the selected input distribution and the ADC quantizer to the second wireless device. A wireless device capable of wirelessly receiving and transmitting a signal includes a transceiver configured to receive a reference signal from a second wireless device through a communication channel, and a processor configured to estimate the communication channel, using the reference signal, selecting a pair of an ADC quantizer and an input distribution, based on the estimated communication channel, and sending information on the selected input distribution and the ADC quantizer to the second wireless device.
Abstract:
A user equipment, apparatus, and method are provided for wireless communication using an IG-OFDM structure. An apparatus is configured to transmit a known reference signal. The apparatus is configured to receive, in response to the reference signal and from at least one user equipment (UE), capability information that includes at least one of the sub-band bandwidth or number of independently decodable sub-bands that can be dynamically turned on or off by the at least one UE. The apparatus is configured to define an interleaved guard OFDM (IG-OFDM) structure according to the received capability information, the IG-OFDM structure including guard tones distributed within an OFDM symbol where there is no signal transmission on these guard tones. The apparatus is configured to communicate with the at least one UE using a transmitted waveform that is shaped according to the IG-OFDM structure.
Abstract:
A user equipment, apparatus, and method are provided for wireless communication using an IG-OFDM structure. An apparatus is configured to transmit a known reference signal. The apparatus is configured to receive, in response to the reference signal and from at least one user equipment (UE), capability information that includes at least one of the sub-band bandwidth or number of independently decodable sub-bands that can be dynamically turned on or off by the at least one UE. The apparatus is configured to define an interleaved guard OFDM (IG-OFDM) structure according to the received capability information, the IG-OFDM structure including guard tones distributed within an OFDM symbol where there is no signal transmission on these guard tones. The apparatus is configured to communicate with the at least one UE using a transmitted waveform that is shaped according to the IG-OFDM structure.
Abstract:
A method and an apparatus for channel estimation. The method includes identifying a set of preferred BS receive beams for each of a plurality of BS antenna SAs based on periodic pilot transmissions from a UE transmitted using predefined UE transmit beams. The method also includes transmitting a request for the UE to transmit pilot signals for the set of preferred BS receive beams. The method further includes receiving the pilot signals using the set of preferred BS receive beams. The method also includes performing channel estimation and determining the data transmission parameters based on the received pilot signals, the data transmission parameters including at least one receive beam at each UE antenna SA to be used for data reception. Additionally, the method includes transmitting, to the UE, information for identifying the at least one receive beam at each UE antenna SA to be used for data reception.
Abstract:
A mobile station is configured to perform a method for uplink timing alignment in a wireless network. The method includes receiving a first downlink synchronization signal from a base station on a first beam pair at a first time associated with a first propagation delay. The method also includes receiving a second downlink synchronization signal from the base station on a second beam pair at a second time associated with a second propagation delay. The method further includes determining a second timing advance for the second beam pair based on a known first timing advance for the first beam pair and a time difference between the first time and the second time.
Abstract:
A mobile station is configured to perform a method for uplink timing alignment in a wireless network. The method includes receiving a first downlink synchronization signal from a base station on a first beam pair at a first time associated with a first propagation delay. The method also includes receiving a second downlink synchronization signal from the base station on a second beam pair at a second time associated with a second propagation delay. The method further includes determining a second timing advance for the second beam pair based on a known first timing advance for the first beam pair and a time difference between the first time and the second time.
Abstract:
A method for a wireless device capable of receiving and transmitting a signal includes receiving a reference signal from a second wireless device through a communication channel, estimating the communication channel, using the reference signal, selecting a pair of an analog digital converter (ADC) quantizer and an input distribution, based on the estimated communication channel, and sending information on the selected input distribution and the ADC quantizer to the second wireless device. A wireless device capable of wirelessly receiving and transmitting a signal includes a transceiver configured to receive a reference signal from a second wireless device through a communication channel, and a processor configured to estimate the communication channel, using the reference signal, selecting a pair of an ADC quantizer and an input distribution, based on the estimated communication channel, and sending information on the selected input distribution and the ADC quantizer to the second wireless device.
Abstract:
Beam-steered millimeter wave signals transmitted in each of n sector slices include a sequence of primary synchronization (PSCH) symbols within predetermined symbol positions in at least one slot of a subframe. The symbols in consecutive symbol positions are each transmitted on a different one of the n slices, with the first symbol repeated on the same slice at the end. The sequence order rotates cyclically in each subframe so that two PSCH symbols are transmitted on one slice in a single subframe every nth subframe. Secondary synchronization (SSCH) and Broadcast Channel (BCH) symbols are transmitted in a predetermined pattern following the sequence of PSCH symbols. By transmitting consecutive PSCH symbols on different slices and repeating the first symbol, the mobile station can detect the best slice and beam by switching receive beams every subframe instead of every slot, relaxing time constraints on AGC adjustment while avoiding the start-at-the-edge problem.