Abstract:
A multi-mode mobile station includes a first interface for communicating with a first wireless network, such as a wireless wide area network (WWAN), and a second interface for communicating with a second wireless network, such as a wireless local area network (WLAN). While the multi-mode mobile station has a first connection with the first wireless network, the multi-mode mobile station establishes a second connection with the second wireless network. When the second connection is established, the second wireless network transmits an acknowledgement signal to the multi-mode mobile station. In response to the acknowledgment signal, the multi-mode mobile station disables the first connection with the first wireless network and powers down the first interface.
Abstract:
A method and system for blindly triggering handover based on past failures to trigger handover of beamforming-served devices. A computing system identifies a geolocation area where wireless communication devices (WCDs) that are served with beamforming by a first access node tend to experience radio link failure after having reported to the first access node being within threshold weak coverage of the first access node and threshold strong coverage of a second access node. And, based on the identifying, the computing system then blindly triggers handover of a given WCD from the first access node to the second access node in response to determining that the given WCD is served with beamforming by the first access node while positioned in the identified geolocation area.
Abstract:
Methods and systems are disclosed to help improve accuracy of location determination for a wireless communication device. An exemplary method involves: (a) at a wireless communication device operating in a radio access network, making a determination that the wireless communication device is likely to lose global positioning system (GPS) connectivity; (b) in response to the determination, powering on a GPS receiver to receive GPS location data for the wireless communication device; and (c) powering off the GPS receiver and storing the received GPS location data.
Abstract:
A mobile location system (MLS) may receive a request to provide a representative location of a user equipment device (UE). In response to receiving the request, the MLS may apply a location determination process so as to determine a location of the UE. The MLS may then determine that the determined location of the UE coincides with an existing location of another entity, such as a private address. In response to determining that the determined location of the UE coincides with the existing location of the other entity, the MLS may adjust the determined location to not coincide with the existing location of the other entity. The adjusted determined location may be a road segment, geodetic marker, or property boundary. The MLS may then provide a response to the request, in which the response identifies the adjusted determined location of the UE as the representative location of the UE.
Abstract:
The described systems and methods allow for safer operation of a wireless communication device (WCD). The methods may be carried out at the WCD or at a wireless-communications network that interfaces to the WCD. A hands-free-audio (HFA) profile associated with the WCD may be set to enabled or disabled. A speed-condition of the WCD is determined and compared to a speed-threshold. If the speed-condition is greater than the speed-threshold and the HFA profile is enabled, then the WCD is operable to engage in wireless communications (e.g., voice calls or text messaging) via an HFA device associated with the WCD. If the speed-condition is greater than the speed-threshold and the HFA profile is set to disabled, then the WCD may prevent and/or postpone wireless communications from occurring. After the speed-condition is determined to be less than the speed-threshold, previously received communications (e.g., text messages) may be presented via the WCD.