摘要:
A method for the removal of residual UV radiation-sensitive adhesive from the surfaces of semiconductor wafers, remaining thereon from protective UV radiation-sensitive tapes which were stripped from the semiconductor wafers. Moreover, provided is an arrangement for implementing the removal of residual sensitive adhesive, which remain from tapes employed as protective layers on semiconductor wafers, particularly wafers having surfaces including C4 connections.
摘要:
Disclosed are a method of and system for fabricating a semiconductor wafer. The method comprises the steps of providing a silicon wafer having a front side an a back side, building an integrated circuit on the front side of the wafer, and thereafter removing substrate from the back side of the silicon wafer. The building step includes the steps of forming a desired structure in the wafer, and forming an end structure in the wafer, said end structure extending to a greater depth, toward the back side of the wafer, than the desired structure. Also, the removing step includes the step of removing said substrate only to the end structure, whereby no part of the desired structure is removed during the removing step.
摘要:
A C4 grind tape and a laser-ablative adhesive layer are formed on a front side of a semiconductor substrate. A carrier substrate is thereafter attached to the laser-ablative adhesive layer. The back side of the semiconductor substrate is thinned by polishing or grinding, during which the carrier substrate provides mechanical support to enable thinning of the semiconductor substrate to a thickness of about 25 μm. A film frame tape is attached to the back side of the thinned semiconductor substrate and the laser-ablative adhesive layer is ablated by laser, thereby dissociating the carrier substrate from the back side of the C4 grind tape. The assembly of the film frame tape, the thinned semiconductor substrate, and the C4 grind tape is diced. The C4 grind tape is irradiated by ultraviolet light to become less adhesive, and is subsequently removed.
摘要:
A C4 grind tape and a laser-ablative adhesive layer are formed on a front side of a semiconductor substrate. A carrier substrate is thereafter attached to the laser-ablative adhesive layer. The back side of the semiconductor substrate is thinned by polishing or grinding, during which the carrier substrate provides mechanical support to enable thinning of the semiconductor substrate to a thickness of about 25 μm. A film frame tape is attached to the back side of the thinned semiconductor substrate and the laser-ablative adhesive layer is ablated by laser, thereby dissociating the carrier substrate from the back side of the C4 grind tape. The assembly of the film frame tape, the thinned semiconductor substrate, and the C4 grind tape is diced. The C4 grind tape is irradiated by ultraviolet light to become less adhesive, and is subsequently removed.
摘要:
A C4 grind tape and a laser-ablative adhesive layer are formed on a front side of a semiconductor substrate. A carrier substrate is thereafter attached to the laser-ablative adhesive layer. The back side of the semiconductor substrate is thinned by polishing or grinding, during which the carrier substrate provides mechanical support to enable thinning of the semiconductor substrate to a thickness of about 25 μm. A film frame tape is attached to the back side of the thinned semiconductor substrate and the laser-ablative adhesive layer is ablated by laser, thereby dissociating the carrier substrate from the back side of the C4 grind tape. The assembly of the film frame tape, the thinned semiconductor substrate, and the C4 grind tape is diced. The C4 grind tape is irradiated by ultraviolet light to become less adhesive, and is subsequently removed.
摘要:
A C4 grind tape and a laser-ablative adhesive layer are formed on a front side of a semiconductor substrate. A carrier substrate is thereafter attached to the laser-ablative adhesive layer. The back side of the semiconductor substrate is thinned by polishing or grinding, during which the carrier substrate provides mechanical support to enable thinning of the semiconductor substrate to a thickness of about 25 μm. A film frame tape is attached to the back side of the thinned semiconductor substrate and the laser-ablative adhesive layer is ablated by laser, thereby dissociating the carrier substrate from the back side of the C4 grind tape. The assembly of the film frame tape, the thinned semiconductor substrate, and the C4 grind tape is diced. The C4 grind tape is irradiated by ultraviolet light to become less adhesive, and is subsequently removed.
摘要:
Disclosed are a method of and system for fabricating a semiconductor wafer. The method comprises the steps of providing a silicon wafer having a front side an a back side, building an integrated circuit on the front side of the wafer, and thereafter removing substrate from the back side of the silicon wafer. The building step includes the steps of forming a desired structure in the wafer, and forming an end structure in the wafer, said end structure extending to a greater depth, toward the back side of the wafer, than the desired structure. Also, the removing step includes the step of removing said substrate only to the end structure, whereby no part of the desired structure is removed during the removing step.
摘要:
A thermally conductive protective film or layer is applied to the backside surface of a semiconductor wafer prior to a subsequent dicing operation performed on the wafer to singulate the wafer into diced semiconductor chips, during which the thin thermally conductive film minimizes and prevents chipping and cracking damage to the wafer and diced chips. During subsequent electrical operation of a diced chip, the thin thermally conductive film functions as a thermal conductor to dissipate and conduct away to a heat sink any heat generated during operation of the chip.
摘要:
Disclosed are embodiments of a method of removing patterned circuit structures from the surface of a semiconductor wafer. The method embodiments comprise blasting the surface of the semiconductor wafer with particles so as to remove substantially all of the patterned circuit structures. The blasting process is followed by one or more grinding, polishing and/or cleaning processes to remove any remaining circuit structures, to remove any lattice damage and/or to achieve a desired smoothness across the surface of the semiconductor wafer.
摘要:
In accordance with the foregoing objects and advantages, the present invention provides a fabrication device that may be used during the grinding operation of the fabrication process. The fabrication device comprises a socket plate that includes a plurality of cavities formed therein that correspond in position and number to the solder (or other conductive material) bumps formed on the front surface of a product wafer.