摘要:
A method for protecting a semiconductor wafer fabricated for image sensing operation from contamination and/or physical damage to a front wafer surface during post-fabrication processing. The method includes applying a protective tape layer on the front surface of the semiconductor wafer in order to protect active light sensors fabricated thereon.
摘要:
Disclosed are embodiments of a method of removing patterned circuit structures from the surface of a semiconductor wafer. The method embodiments comprise blasting the surface of the semiconductor wafer with particles so as to remove substantially all of the patterned circuit structures. The blasting process is followed by one or more grinding, polishing and/or cleaning processes to remove any remaining circuit structures, to remove any lattice damage and/or to achieve a desired smoothness across the surface of the semiconductor wafer.
摘要:
Disclosed are a method of and system for fabricating a semiconductor wafer. The method comprises the steps of providing a silicon wafer having a front side an a back side, building an integrated circuit on the front side of the wafer, and thereafter removing substrate from the back side of the silicon wafer. The building step includes the steps of forming a desired structure in the wafer, and forming an end structure in the wafer, said end structure extending to a greater depth, toward the back side of the wafer, than the desired structure. Also, the removing step includes the step of removing said substrate only to the end structure, whereby no part of the desired structure is removed during the removing step.
摘要:
Disclosed are embodiments of a method of removing patterned circuit structures from the surface of a semiconductor wafer. The method embodiments comprise blasting the surface of the semiconductor wafer with particles so as to remove substantially all of the patterned circuit structures. The blasting process is followed by one or more grinding, polishing and/or cleaning processes to remove any remaining circuit structures, to remove any lattice damage and/or to achieve a desired smoothness across the surface of the semiconductor wafer.
摘要:
A C4 grind tape and a laser-ablative adhesive layer are formed on a front side of a semiconductor substrate. A carrier substrate is thereafter attached to the laser-ablative adhesive layer. The back side of the semiconductor substrate is thinned by polishing or grinding, during which the carrier substrate provides mechanical support to enable thinning of the semiconductor substrate to a thickness of about 25 μm. A film frame tape is attached to the back side of the thinned semiconductor substrate and the laser-ablative adhesive layer is ablated by laser, thereby dissociating the carrier substrate from the back side of the C4 grind tape. The assembly of the film frame tape, the thinned semiconductor substrate, and the C4 grind tape is diced. The C4 grind tape is irradiated by ultraviolet light to become less adhesive, and is subsequently removed.
摘要:
A C4 grind tape and a laser-ablative adhesive layer are formed on a front side of a semiconductor substrate. A carrier substrate is thereafter attached to the laser-ablative adhesive layer. The back side of the semiconductor substrate is thinned by polishing or grinding, during which the carrier substrate provides mechanical support to enable thinning of the semiconductor substrate to a thickness of about 25 μm. A film frame tape is attached to the back side of the thinned semiconductor substrate and the laser-ablative adhesive layer is ablated by laser, thereby dissociating the carrier substrate from the back side of the C4 grind tape. The assembly of the film frame tape, the thinned semiconductor substrate, and the C4 grind tape is diced. The C4 grind tape is irradiated by ultraviolet light to become less adhesive, and is subsequently removed.
摘要:
A C4 grind tape and a laser-ablative adhesive layer are formed on a front side of a semiconductor substrate. A carrier substrate is thereafter attached to the laser-ablative adhesive layer. The back side of the semiconductor substrate is thinned by polishing or grinding, during which the carrier substrate provides mechanical support to enable thinning of the semiconductor substrate to a thickness of about 25 μm. A film frame tape is attached to the back side of the thinned semiconductor substrate and the laser-ablative adhesive layer is ablated by laser, thereby dissociating the carrier substrate from the back side of the C4 grind tape. The assembly of the film frame tape, the thinned semiconductor substrate, and the C4 grind tape is diced. The C4 grind tape is irradiated by ultraviolet light to become less adhesive, and is subsequently removed.
摘要:
A method for the removal of residual UV radiation-sensitive adhesive from the surfaces of semiconductor wafers, remaining thereon from protective UV radiation-sensitive tapes which were stripped from the semiconductor wafers. Moreover, provided is an arrangement for implementing the removal of residual sensitive adhesive, which remain from tapes employed as protective layers on semiconductor wafers, particularly wafers having surfaces including C4 connections.
摘要:
A C4 grind tape and a laser-ablative adhesive layer are formed on a front side of a semiconductor substrate. A carrier substrate is thereafter attached to the laser-ablative adhesive layer. The back side of the semiconductor substrate is thinned by polishing or grinding, during which the carrier substrate provides mechanical support to enable thinning of the semiconductor substrate to a thickness of about 25 μm. A film frame tape is attached to the back side of the thinned semiconductor substrate and the laser-ablative adhesive layer is ablated by laser, thereby dissociating the carrier substrate from the back side of the C4 grind tape. The assembly of the film frame tape, the thinned semiconductor substrate, and the C4 grind tape is diced. The C4 grind tape is irradiated by ultraviolet light to become less adhesive, and is subsequently removed.
摘要:
A semiconductor structure fabrication method for removing a tape physically attached to a device side of the semiconductor substrate by an adhesive layer of the tape, wherein the adhesive layer comprises an adhesive material. The method includes the step of submerging the tape in a liquid chemical comprising monoethanolamine or an alkanolamine for a pre-specified period of time sufficient to allow for a separation of the tape from the semiconductor substrate without damaging devices on the semiconductor substrate.