摘要:
A novel CCP scheme is disclosed for a CPP-GMR sensor in which an amorphous metal/alloy layer such as Hf is inserted between a lower Cu spacer and an oxidizable layer such as Al, Mg, or AlCu prior to performing a pre-ion treatment (PIT) and ion assisted oxidation (IAO) to transform the amorphous layer into a first metal oxide template and the oxidizable layer into a second metal oxide template both having Cu metal paths therein. The amorphous layer promotes smoothness and smaller grain size in the oxidizable layer to minimize variations in the metal paths and thereby improves dR/R, R, and dR uniformity by 50% or more. A thin Cu layer may be inserted between the amorphous layer and oxidizable layer before the PIT and IAO processes are performed.
摘要:
A method is described for forming a confining current path (CCP) spacer in a CPP-GMR sensor. A first Cu spacer, an amorphous metal/alloy layer such as Hf, a second Cu spacer, and an oxidizable layer such as Al, Mg, or AlCu are sequentially deposited on a ferromagnetic layer. A pre-ion treatment (PIT) and ion assisted oxidation (IAO) transform the amorphous layer into a first metal oxide template and the oxidizable layer into a second metal oxide template both having Cu metal paths therein. A third Cu layer is deposited on the second metal oxide template. The amorphous layer promotes smoothness and smaller grain size in the oxidizable layer to minimize variations in the metal paths and thereby improves dR/R, R, and dR uniformity by 50% or more.
摘要:
A PMR writer is disclosed wherein a hot seed layer (HS) made of a 19-24 kilogauss (kG) magnetic material is formed between a side gap and a 10-16 kG magnetic layer in the side shields, and between a 16-19 kG magnetic layer and the leading gap in the leading shield to improve Hy_grad and Hy_grad_x while maintaining write-ability. The HS is from 10 to 100 nm thick and has a first side facing the write pole with a height of ≦0.15 micron, and a second side facing a main pole flared side that may extend to a full side shield height of ≦0.5 micron. First and second sides may form a continuous curve or the a double tapered design where first and second sides have different angles with respect to a center plane. The side shield design described herein is especially beneficial for side gaps of 20-60 nm.
摘要:
A PMR writer is disclosed wherein a hot seed layer (HS) made of a 19-24 kilogauss (kG) magnetic material is formed between a gap layer and a 10-16 kG magnetic layer in the side shields, and between the leading gap and a 16-19 kG magnetic layer in the leading shield to improve the track field gradient and cross-track field gradient while maintaining write-ability. The HS is from 10 to 100 nm thick and has a first side facing the write pole with a height of ≦0.15 micron, and a second side facing a main pole flared side that may extend to a full side shield height of ≦0.5 micron. The trailing shield has a second hot seed layer on the write gap and a 16-19 kG magnetic layer that contacts the 10-16 kG side shield magnetic layer thereby forming an all wrap around (AWA) shield configuration.
摘要:
A PMR writer is disclosed wherein a hot seed layer (HS) made of a 19-24 kilogauss (kG) magnetic material is formed between a gap layer and a 10-16 kG magnetic layer in the side shields, and between the leading gap and a 16-19 kG magnetic layer in the leading shield to improve Hy_grad and Hy_grad_x while maintaining write-ability. The HS is from 10 to 100 nm thick and has a first side facing the write pole with a height of ≦0.15 micron, and a second side facing a main pole flared side that may extend to a full side shield height of ≦0.5 micron. First and second sides may form a continuous curve or a double tapered design where first and second sides have different angles with respect to a center plane. The side shield design described herein is especially beneficial for side gaps of 20-60 nm.