摘要:
A control device for an internal combustion engine performs rich control when a fuel cutoff operation is terminated and fuel supply to a combustion chamber is restarted, and the engine includes a plurality of the combustion chambers and a fuel supply cycle is repeated. The control device includes a controller configured to set a first moment and a second moment such that the fuel supply cycle which includes the first moment is different from the fuel supply cycle which includes the second moment, the first moment being a moment at which the rich control is started in a first combustion chamber of the plurality of combustion chambers, and the second moment being a moment at which the rich control is started in a second combustion chamber of the plurality of combustion chambers that is different from the first combustion chamber.
摘要:
A control device for an internal combustion engine performs rich control when a fuel cutoff operation is terminated and fuel supply to a combustion chamber is restarted, and the engine includes a plurality of the combustion chambers and a fuel supply cycle is repeated. The control device includes a controller configured to set a first moment and a second moment such that the fuel supply cycle which includes the first moment is different from the fuel supply cycle which includes the second moment, the first moment being a moment at which the rich control is started in a first combustion chamber of the plurality of combustion chambers, and the second moment being a moment at which the rich control is started in a second combustion chamber of the plurality of combustion chambers that is different from the first combustion chamber.
摘要:
An air-fuel ratio control apparatus for an internal combustion engine according to an embodiment of the invention (the present control apparatus) sets a target air-fuel ratio to a target rich air-fuel ratio when it is determined on the basis of the output value Voxs of a downstream air-fuel ratio sensor 67 that the oxygen adsorption amount of a catalyst 43 tends to be excessive, and sets the target air-fuel ratio to a target lean air-fuel ratio when it is determined on the basis of the output value Voxs that the oxygen adsorption amount of the catalyst 43 tends to be insufficient. Further, the present control apparatus determines whether or not an operation state in which a large amount of nitrogen oxide flows into the catalyst 43 is reached on the basis of “whether a predetermined condition is fulfilled”, and makes the target rich air-fuel ratio obtained when the predetermined condition is fulfilled less than the target rich air-fuel ratio obtained when the predetermined condition is not fulfilled. As a result, the concentration of a reducing agent inside the catalyst 43 can be increased before a large amount of NOx flows into the catalyst 43. Therefore, when a large amount of NOx flows into the catalyst 43, most of the NOx can be eliminated.
摘要:
An air-fuel ratio control apparatus of the present invention includes a determination section and a reverse direction correction introducing section. The determination section determines whether or not an output of the downstream air-fuel ratio sensor falls within a predetermined range whose center corresponds to a target value corresponding to the stoichiometric air-fuel ratio. When the output of the downstream air-fuel ratio sensor falls within the predetermined range, the reverse direction correction introducing section temporarily introduces, to an air-fuel ratio correction in a direction requested by the output, an air-fuel ratio correction in a direction opposite to the requested direction.
摘要:
An air-fuel ratio control apparatus for an internal combustion engine according to an embodiment of the invention (the present control apparatus) sets a target air-fuel ratio to a target rich air-fuel ratio when it is determined on the basis of the output value Voxs of a downstream air-fuel ratio sensor 67 that the oxygen adsorption amount of a catalyst 43 tends to be excessive, and sets the target air-fuel ratio to a target lean air-fuel ratio when it is determined on the basis of the output value Voxs that the oxygen adsorption amount of the catalyst 43 tends to be insufficient. Further, the present control apparatus determines whether or not an operation state in which a large amount of nitrogen oxide flows into the catalyst 43 is reached on the basis of “whether a predetermined condition is fulfilled”, and makes the target rich air-fuel ratio obtained when the predetermined condition is fulfilled less than the target rich air-fuel ratio obtained when the predetermined condition is not fulfilled. As a result, the concentration of a reducing agent inside the catalyst 43 can be increased before a large amount of NOx flows into the catalyst 43. Therefore, when a large amount of NOx flows into the catalyst 43, most of the NOx can be eliminated.
摘要:
An air-fuel ratio control apparatus of the present invention includes a determination section and a reverse direction correction introducing section. The determination section determines whether or not an output of the downstream air-fuel ratio sensor falls within a predetermined range whose center corresponds to a target value corresponding to the stoichiometric air-fuel ratio. When the output of the downstream air-fuel ratio sensor falls within the predetermined range, the reverse direction correction introducing section temporarily introduces, to an air-fuel ratio correction in a direction requested by the output, an air-fuel ratio correction in a direction opposite to the requested direction.
摘要:
A semiconductor device that can suppress variation of GND potential of a control board and prevent malfunction of IC without restricting a mounting direction of the IC of the control board is provided. In a power module 10 as a semiconductor device in which an insulating board 31 having a power switching element 24 and a control board 22 having IC 50 for controlling the power switching element 24 are vertically provided in a case body 19, GND pins 61 are provided at both the sides of the IC 50, a GND pattern 51 to which the GND pins 61 of the IC 50 are connected is provided in the control board 22, and a GND loop breaking slit 70 as a breaking portion for breaking a GND loop formed by electrical connection of the IC 50, the GND pins 61 at both the sides of the IC 50 and the GND pattern 51 is provided to the GND pattern 51.
摘要:
An air-fuel ratio imbalance among cylinders determining apparatus according to the present invention is applied to a multi-cylinder internal combustion engine in which a compression ratio is variable. The determining apparatus obtains, using at least an output value of an upstream air-fuel ratio sensor disposed for a catalyst, an “imbalance determining parameter” which becomes larger as a degree of an imbalance among “individual cylinder air-fuel ratios” becomes larger, each of the individual cylinder air-fuel ratios being an air-fuel ratio of a mixture supplied to each of cylinders. Further, the determining apparatus determines that an air-fuel ratio imbalance state among cylinders is occurring, when the imbalance determining parameter is larger than a predetermined threshold. The determining apparatus changes the predetermined threshold in accordance with a mechanical compression ratio of the engine.
摘要:
A catalyst deterioration diagnosing apparatus is provided with means for performing stoichiometric feedback control on the air-fuel ratio based on at least output from an upstream air-fuel ratio sensor provided upstream of a catalyst, means for measuring the oxygen storage capacity of the catalyst, and means for correcting the measured value of the oxygen storage capacity based on at least the output behavior of a downstream air-fuel ratio sensor provided downstream of the catalyst during the stoichiometric feedback control. The measured value of the oxygen storage capacity is corrected using the output behavior of the downstream air-fuel ratio sensor during stoichiometric feedback control. The diagnostic is performed after eliminating the effects from sulfur by correcting the measured value to a value corresponding to when low sulfur fuel is used, which makes it possible to prevent an erroneous diagnosis from being made.