摘要:
In a commutator of an armature of an electric motor, a plurality of segments are arranged on the outer peripheral surface of a commutator ring at equal angular intervals. The segments which are in the same phase and oppose with 180° angular interval are connected through a conductive plate. Each conductive plate is spaced apart a predetermined distance from adjacent ones in the axial direction not to short, and molded within the commutator ring. Each of brushes is shaped to have a width which is sufficient to bridge over three segments. Alternatively, the commutator ring may be shaped to have a tapering protrusion part (25c) and the same-phase segments may be directly connected by a shorting wire along the tapering protrusion part.
摘要:
In a state in which a first divisional core and a second divisional core are arranged in a state spaced from each other and adjacent to each other, a first coil and a second coil are each wound around a tooth. The first coil and the second coil are in the same phase. In a state in which a plurality of divisional cores are arranged annularly so that their teeth are oriented in a radially inward direction, the first divisional core and the second divisional core are not adjacent to each other in the circumferential direction. A plurality of connection wires are shaped to converge at an end surface of a stator core. This facilitates the winding of the coils around the divisional cores. Further, the connection wires can be shortened.
摘要:
A stator for a motor includes a stator core, an insulator, and coils. The stator core includes an annular portion and teeth, which extend radially from the annular portion. The stator core is divided into core segments in the circumferential direction. Each core segment has an arcuate portion and one of the teeth, which extends from the arcuate portion. The insulator insulates each coil wound around one of the teeth from the stator core. The insulator includes coupling portions at positions corresponding to the circumferential ends of the arcuate portions. Each coupling portion couples the adjacent core segments to be rotatable relative to each other. The insulator facilitates manufacture of the stator.
摘要:
A stator for a motor includes a stator core, an insulator, and coils. The stator core includes an annular portion and teeth, which extend radially from the annular portion. The stator core is divided into core segments in the circumferential direction. Each core segment has an arcuate portion and one of the teeth, which extends from the arcuate portion. The insulator insulates each coil wound around one of the teeth from the stator core. The insulator includes coupling portions at positions corresponding to the circumferential ends of the arcuate portions. Each coupling portion couples the adjacent core segments to be rotatable relative to each other. The insulator facilitates manufacture of the stator.
摘要:
In a state in which a first divisional core and a second divisional core are arranged in a state spaced from each other and adjacent to each other, a first coil and a second coil are each wound around a tooth. The first coil and the second coil are in the same phase. In a state in which a plurality of divisional cores are arranged annularly so that their teeth are oriented in a radially inward direction, the first divisional core and the second divisional core are not adjacent to each other in the circumferential direction. A plurality of connection wires are shaped to converge at an end surface of a stator core. This facilitates the winding of the coils around the divisional cores. Further, the connection wires can be shortened.
摘要:
A stator for a motor includes a stator core, an insulator, and coils. The stator core includes an annular portion and teeth, which extend radially from the annular portion. The stator core is divided into core segments in the circumferential direction. Each core segment has an arcuate portion and one of the teeth, which extends from the arcuate portion. The insulator insulates each coil wound around one of the teeth from the stator core. The insulator includes coupling portions at positions corresponding to the circumferential ends of the arcuate portions. Each coupling portion couples the adjacent core segments to be rotatable relative to each other. The insulator facilitates manufacture of the stator.
摘要:
An armature for a motor. The armature includes a core formed of compression-molded metal powder. The core has a continuous outer wall, an inner wall defining a slot, and a nonmagnetic section arranged on the outer wall. A coil is arranged in the slot. The coil and the slot have the same hexagonal shape to minimize gaps when the coil is fitted in the slot.
摘要:
A total number of windings in an armature is an even number. The windings are divided into a first winding group and a second winding group. The windings of the first winding group are arranged one after another at generally equal angular intervals without overlapping with each other. The windings of the second winding group are arranged one after another at generally equal angular intervals without overlapping with each other and are wound separately from the windings of the first winding group.
摘要:
An insulator is mounted in an armature core. Coils are wound around teeth of the armature core by way of concentrated winding. A power feeding member, which supplies a current to the coils, includes a connecting portion. A separating portion, which is provided in the insulator, is located in the teeth. The separating portion separates each of the coils to a first portion and a second portion. The connecting portion is electrically connected to the first portion. Accordingly, while preventing damage to the coils, the coils are easily connected to the power feeding member.
摘要:
A coil of a winding is wound around teeth of an armature core for a predetermined number of times in a motor. A start lead of the winding connects between the coil and a corresponding start segment among a plurality of segments of a commutator. A finish lead of the winding connects between the coil and a corresponding finish segment among the plurality of segments. The finish segment is located adjacent to a diametrically opposed one of the plurality of segments, which is circumferentially displaced by about 180 degrees from the start segment and is thereby diametrically opposed to the start segment.