摘要:
A cluster internal routing network for use in a programmable logic device with a cluster-based architecture employs a Clos network-based routing architecture. The routing architecture is a multi-stage blocking architecture, where the number of inputs to the first stage exceeds the number of outputs from the first stage.
摘要:
An interconnect architecture for a programmable logic device comprises a plurality of interconnect routing lines. The data inputs of a plurality of first-level multiplexers are connected to the plurality of interconnect routing lines such that each interconnect routing line is connected to only one multiplexer. A plurality of second-level multiplexers are organized into multiplexer groups. Each of a plurality of lookup tables is associated with one of the multiplexer groups and has a plurality of lookup table inputs. Each lookup table input is coupled to the output of a different one of the second-level multiplexers in the one of the multiplexer groups with which it is associated. The data inputs of the second-level multiplexers are connected to the outputs of the first-level multiplexers such that each output of each first-level multiplexer is connected to an input of only one second-level multiplexer in each multiplexer group.
摘要:
A logic cluster for a field programmable gate array integrated circuit device is disclosed. The cluster comprises a plurality of functional blocks and three levels of routing multiplexers. External signals enter the logic cluster primarily at the third level multiplexers with a few signals entering at the second level. Combinational outputs are fed back into the first and second level multiplexers while sequential outputs are fed back into the third level multiplexers. The logic function generators have permutable inputs with varying propagation delays. Routing signals between the first and second level multiplexers are grouped into speed classes and coupled to first level multiplexers associated with different logic function generators according to their speed class. Second and third level multiplexers are organized into groups such that routing signals between the second and third level multiplexers can be localized within the area occupied by the group. Groups are pitch matched to logic function generators to optimize and modularize area. Provision is made for global and local control of the sequential elements.
摘要:
An interconnect architecture for a programmable logic device comprises a plurality of interconnect routing lines. The data inputs of a plurality of first-level multiplexers are connected to the plurality of interconnect routing lines such that each interconnect routing line is connected to only one multiplexer. A plurality of second-level multiplexers are organized into multiplexer groups. Each of a plurality of lookup tables is associated with one of the multiplexer groups and has a plurality of lookup table inputs. Each lookup table input is coupled to the output of a different one of the second-level multiplexers in the one of the multiplexer groups with which it is associated. The data inputs of the second-level multiplexers are connected to the outputs of the first-level multiplexers such that each output of each first-level multiplexer is connected to an input of only one second-level multiplexer in each multiplexer group.
摘要:
An interface design for a hybrid IC that utilizes dedicated interface tracks to allow signals to interface distributively with the logic blocks of the FPGA portion providing for faster and more efficient communication between the FPGA and ASIC portions of the hybrid IC.
摘要:
A logic module and flip-flop includes input multiplexers having data inputs coupled to routing resources. A clock multiplexer has inputs coupled to clock resources, and an output. An input-select multiplexer has a first input coupled to the output of an input multiplexer. A flip-flop has a clock input coupled to the output of the clock multiplexer, and a data output coupled to an input of the input-select multiplexer. A logic module has data inputs coupled to the output of the input select multiplexers. A flip-flop multiplexer is coupled to the data input of the flip-flop, and has inputs input coupled to the output of the first input multiplexer, the data output of the logic module, and a third input coupled to routing resources.
摘要:
A method for designing a system on a field programmable gate array (FPGA) includes performing mapping with a plurality of passes where a different assumption is made with respect to a property of the FPGA during each pass.
摘要:
Disclosed is a configurable logic circuit that includes at least 6 inputs and at least two outputs. The configurable logic element can carry out only a subset of all 6-input logic functions and, thus, requires a substantially smaller silicon area than a 6-LUT that can perform all 6-input logic functions. Also, the configurable logic circuit can be configured such that a first subset of the inputs drive one of the outputs and a second subset of the inputs drive another output.
摘要:
An FPGA architecture has top, middle and low levels. The top level of the architecture is an array of the B16×16 tiles arranged in a rectangular array and enclosed by I/O blocks on the periphery. On each of the four sides of a B16×16 tile, and also associated with each of the I/O blocks is a freeway routing channel. A B16×16 tile in the middle level of hierarchy is a sixteen by sixteen array of B1 blocks. The routing resources in the middle level of hierarchy are expressway routing channels M1, M2, and M3 including groups of interconnect conductors. At the lowest level of the semi-hierarchical FPGA architecture, there are block connect (BC) routing channels, local mesh (LM) routing channels, and direct connect (DC) interconnect conductors. Each BC routing channel is coupled to an expressway tab to provide access for each B1 block to the expressway routing channels M1, M2, and M3, respectively. Each BC routing channel has nine interconnect conductors which are grouped into three groups of three interconnect conductors. Each group of three interconnect conductors is connected to a first side of a Extension Block (EB) 3×3 switch matrix. A second side of each EB 3×3 switch matrix is coupled to the E-tab. Between adjacent B1 blocks , in both the horizontal and vertical directions, the leads on the second side of a first EB 3×3 switch matrix may be coupled to the leads on the second side of second EB3×3 switch matrix by BC criss-cross extension.
摘要:
An FPGA architecture has top, middle and low levels. The top level of the architecture is an array of the B16×16 tiles arranged in a rectangular array and enclosed by I/O blocks on the periphery. A B16×16 tile in the middle level of hierarchy is a sixteen by sixteen array of B1 blocks. The B16×16 tile is a nesting of a B2×2 tile that includes a two by two array of four B1 blocks. The routing resources in the middle level of hierarchy are expressway routing channels M1, M2, and M3 including groups of interconnect conductors. The expressway routing channels M1, M2, and M3 are segmented, and between each of the segments in the expressway routing channels M1, M2, and M3 are disposed extensions that can extend the expressway routing channel M1, M2, or M3 an identical distance along the same direction. The expressway routing channels M1, M2, and M3 run both vertically through every column and horizontally through every row of B2×2 tiles. At the intersections of each of the expressway routing channels M1, M2, and M3 in the horizontal direction with the expressway routing channels M1, M2 and M3 in the vertical direction is an expressway turn (E-turn) disposed at the center of each B2×2 tile. An E-turn is a passive device that includes a matrix of reprogrammable switches. The reprogrammable switches are preferably a pass device controlled by an SRAM bit. The interconnect conductors in the expressway routing channels M1, M2 and M3 that are fed into an E-turn may be coupled to many of the other interconnect conductors in the expressway routing channels M1, M2 and M3 that come into the E-turn by the programmable switches. Further, the interconnect conductors in the expressway routing channels M1, M2 and M3 that are fed into an E-turn continue in the same direction through the E-turn, even though the interconnect conductors are coupled to other interconnect conductors by the reprogrammable switches.