摘要:
Methods, systems, and computer-readable media are provided for offloading services and functionalities from a main host central processing unit (CPU) of a computing device to a dedicated power-efficient offload engine, thereby enabling a longer battery life for the device and an enhanced set of features.
摘要:
A system and method for the distribution of time signals is available for devices with multiple communication cores. An embodiment may or may not use a centralized manager for the management of time preservation. When a communication core in a multiple communication core device requires timing information, it may request the time information from another communication core or from the centralized manager. The centralized manager, if present, can obtain time information from an external source or from one of the communication cores. The result can be reduced power consumption at a lower cost.
摘要:
Some demonstrative embodiments include devices, systems and/or methods of estimating a location of a mobile device. For example, a location estimation entity (LE) may be configured to receive from a server location-based location-enabling source (LES) information identifying one or more location-enabling sources based on a location area of a mobile device, and to communicate with the one or more identified location-enabling sources information for estimating the location of the mobile device.
摘要:
Sonic demonstrative embodiments include devices, systems and/or methods of collaboratively correct location errors. For example, a device may include a collaborative location error corrector to collaboratively correct location errors for at least one group of two or more wireless communication devices, the location error corrector is to receive from at least a first wireless communication device of the group an error report indicating an error in an estimated location of the first wireless communication device, to determine correction information based at least on the error report from the first wireless communication device, and to provide the correction information to at least a second wireless communication device of the group.
摘要:
Some demonstrative embodiments include devices, systems and/or methods of location estimation of a mobile device. For example, a device may include a location error corrector to provide location data to at least one application executed by the device, the location data indicating an estimated location of the device, which is based on location information from at least one location-information generator; to receive from the application error feedback information indicating an error in the estimated location; to determine a correction based on the error feedback information; and to provide to the application corrected location data based on the correction.
摘要:
Some demonstrative embodiments include devices, systems and/or methods of location estimation of a mobile device. For example, a device may include a location error corrector to provide location data to at least one application executed by the device, the location data indicating an estimated location of the device, which is based on location information from at least one location-information generator; to receive from the application error feedback information indicating an error in the estimated location; to determine a correction based on the error feedback information; and to provide to the application corrected location data based on the correction.
摘要:
A novel and useful apparatus for and method of coordinating the allocation of transmission and reception availability and/or unavailability periods for use in a communications device incorporating collocated multiple radios. The mechanism provide both centralized and distributed coordination to enable the coordination (e.g., to achieve coexistence) of multiple radio access communication devices (RACDs) collocated in a single device such as a mobile station. A distributed activity coordinator modifies the activity pattern of multiple RACDs. The activity pattern comprises a set of radio access specific modes of operation, (e.g., IEEE 802.16 Normal, Sleep, Scan or Idle modes, 3GPP GSM/EDGE operation mode (PTM, IDLE, Connected, DTM modes), etc.) and a compatible set of wake-up events, such as reception and transmission availability periods. To prevent interference and possible loss of data, a radio access is prevented from transmitting or receiving data packets while another radio access is transmitting or receiving. In the event two or more RATs desire to be active at the same time, the mechanism negotiates an availability pattern between the MS and a corresponding BS to achieve coordination between the RATs.
摘要:
Some demonstrative embodiments include devices, systems and/or methods of collaboratively correct location errors. For example, a device may include a collaborative location error corrector to collaboratively correct location errors for at least one group of two or more wireless communication devices, the location error corrector is to receive from at least a first wireless communication device of the group an error report indicating an error in an estimated location of the first wireless communication device, to determine correction information based at least on the error report from the first wireless communication device, and to provide the correction information to at least a second wireless communication device of the group.
摘要:
A method and system for time synchronization in a mobile device are disclosed. The method includes negotiating a synchronization schedule. The synchronization schedule defines a plurality of synchronization times for receiving synchronization messages. The method further includes transitioning the mobile device from a first state to a second state to receive a synchronization message. The mobile device uses less power in the first state than the second state and the mobile device cannot receive the synchronization message when in the first state. The method further includes synchronizing a clock component in response to receiving the synchronization message.
摘要:
Some demonstrative embodiments include devices, systems and/or methods of controlling access to location sources. For example, a device may include a location caching controller to store cached location information in a cache based on location information retrieved from two or more location sources, to receive at least one location request from at least one application, to select between retrieving requested location information from at least one of the location sources and retrieving the requested location information from the cache, and to provide to the application a location response including the requested location information.