摘要:
A memory system, memory device, and method for setting an operating mode of a memory device include a memory cell array; row and column decoders which select a row and a column of the memory cell array, respectively, according to a multi-bit address signal; and a mode control circuit which receives at least one bit from the multi-bit address signal used in the selection of the row or the column, and which sets an operating mode of the memory device according to the at least one bit, wherein the operating mode is one of a burst length mode, a DLL reset mode, a test mode, a CAS latency mode, and a burst type mode.
摘要:
A memory system, memory device, and method for setting an operating mode of a memory device include a memory cell array; row and column decoders which select a row and a column of the memory cell array, respectively, according to a multi-bit address signal; and a mode control circuit which receives at least one bit from the multi-bit address signal used in the selection of the row or the column, and which sets an operating mode of the memory device according to the at least one bit, wherein the operating mode is one of a burst length mode, a DLL reset mode, a test mode, a CAS latency mode, and a burst type mode.
摘要:
A level shifter circuit and method thereof are provided. The example level shifter circuit may include a pull-up drive unit driving an output node from a first voltage to a second voltage in response to an input signal, a target voltage for the second voltage higher than a target voltage for the first voltage and the input signal based on the first voltage and a third voltage and a pull-down drive unit driving the output node to the third voltage in response to the input signal, the pull-up and pull-down drive units adjusting current levels of at least one of a pull-up current flowing through the pull-up drive unit and a pull-down current flowing through the pull-down drive unit based on whether the pull-up drive unit and the pull-down drive unit are operating concurrently. The example method may include pull-up driving an output node from a first voltage to a second voltage in response to an input signal, a target voltage for the second voltage higher than a target voltage for the first voltage and the input signal based on the first voltage and a third voltage, pull-down driving the output node to the third voltage in response to the input signal, determining whether the pull-up and pull-down driving operations are performed concurrently and adjusting current levels of at least one of a pull-up current and a pull-down current based on the determining step.
摘要:
A semiconductor memory device having an externally controllable input and output mode is provided. The semiconductor memory device includes a first and second plurality of pads and an input and output mode set circuit electrically connected to the first plurality of pads and the second plurality of pads, for generating a plurality of input and output mode signals. The input and output mode set circuit cuts off signals received from the first plurality of pads, controls the level of each of the input and output mode signals to be at either a logic high level and a logic low level, and sets the input and output mode when a voltage higher than the supply voltage of the semiconductor memory device is applied to one of the second plurality of pads in a test mode. The high voltage is not applied to the second plurality of pads and the input and output mode set circuit controls the level of the input and output mode signals to be at either a logic high level or a logic low level, and thus sets the semiconductor memory device to have one input and output mode responsive to signals received from the plurality of pads, during a normal operation. Accordingly, it is possible to externally change the input and output mode of the semiconductor memory device.
摘要:
A memory device for early stabilization and rapid increase of a power level after deep power down exit includes a deep power down exit pulse generator, a deep power down exit mode signal generator, a current driving unit, a controller and a voltage generator. The deep power down exit pulse generator generates a deep power down exit pulse signal having a predetermined pulse width in response to a deep power down command. The deep power down exit mode signal generator generates a deep power down exit mode bias signal in response to the deep power down exit pulse signal. The current driving unit generates a deep power down exit mode reference voltage in response to the deep power down exit mode bias signal and a reference signal. The controller generates an enable signal in response to the deep power down exit mode bias signal or an active command. The voltage generator compares the deep power down exit mode reference voltage to an internal power supply voltage in response to the enable signal and outputs the internal power supply voltage. The memory device previously generates the internal power supply voltage, which is used in the active mode, in a deep power down exit mode before an active command is applied to the memory device, and thus a power-up ensuring time after deep power down mode exit can be reduced.
摘要:
A memory device for early stabilization and rapid increase of a power level after deep power down exit includes a deep power down exit pulse generator, a deep power down exit mode signal generator, a current driving unit, a controller and a voltage generator. The deep power down exit pulse generator generates a deep power down exit pulse signal having a predetermined pulse width in response to a deep power down command. The deep power down exit mode signal generator generates a deep power down exit mode bias signal in response to the deep power down exit pulse signal. The current driving unit generates a deep power down exit mode reference voltage in response to the deep power down exit mode bias signal and a reference signal. The controller generates an enable signal in response to the deep power down exit mode bias signal or an active command. The voltage generator compares the deep power down exit mode reference voltage to an internal power supply voltage in response to the enable signal and outputs the internal power supply voltage. The memory device previously generates the internal power supply voltage, which is used in the active mode, in a deep power down exit mode before an active command is applied to the memory device, and thus a power-up ensuring time after deep power down mode exit can be reduced.
摘要:
A semiconductor memory device having an externally controllable input and output mode is provided. The semiconductor memory device includes a first and second plurality of pads and an input and output mode set circuit electrically connected to the first plurality of pads and the second plurality of pads, for generating a plurality of input and output mode signals. The input and output mode set circuit cuts off signals received from the first plurality of pads, controls the level of each of the input and output mode signals to be at either a logic high level and a logic low level, and sets the input and output mode when a voltage higher than the supply voltage of the semiconductor memory device is applied to one of the second plurality of pads in a test mode. The high voltage is not applied to the second plurality of pads and the input and output mode set circuit controls the level of the input and output mode signals to be at either a logic high level or a logic low level, and thus sets the semiconductor memory device to have one input and output mode responsive to signals received from the plurality of pads, during a normal operation. Accordingly, it is possible to externally change the input and output mode of the semiconductor memory device.
摘要:
A semiconductor memory device having an externally controllable input and output mode is provided. The semiconductor memory device includes a first and second plurality of pads and an input and output mode set circuit electrically connected to the first plurality of pads and the second plurality of pads, for generating a plurality of input and output mode signals. The input and output mode set circuit cuts off signals received from the first plurality of pads, controls the level of each of the input and output mode signals to be at either a logic high level and a logic low level, and sets the input and output mode when a voltage higher than the supply voltage of the semiconductor memory device is applied to one of the second plurality of pads in a test mode. The high voltage is not applied to the second plurality of pads and the input and output mode set circuit controls the level of the input and output mode signals to be at either a logic high level or a logic low level, and thus sets the semiconductor memory device to have one input and output mode responsive to signals received from the plurality of pads, during a normal operation. Accordingly, it is possible to externally change the input and output mode of the semiconductor memory device.