Abstract:
A receptacle for receiving a plug connector of a high-voltage cable for a microfocus X-ray tube with a cathode, which has a metal filament and grid. The receptacle has a ceramic insulator with three contiguous cavities. The first cavity near the filament includes electrical contacts for the filament and the grid. The second cavity includes spring contacts for supplying current to the filament and a center pin for supplying voltage to the grid. The third cavity receives the plug connector. The insulator has a removable grid cap which is conductively connected to the grid of the cathode. The first and second cavities are surrounded in the radial direction by the grid cap, An air gap extends radially between grid cap and ceramic body. At the end of the grid cap remote from the filament is a circumferential groove in the axial direction between the grid cap and the ceramic insulator.
Abstract:
A high voltage vacuum feed through (23) for an electron tube (25) has an anode (28) and an insulating body (1) of ceramic material, the insulating body (1) having a continuous hollow space (10). The anode (28) has a rear part (2) and a front part (3) mounted thereto. The rear part (2) consists of a first metallic material, having a thermal expansion coefficient corresponding to a thermal expansion coefficient of the ceramic material. The rear part (2) is arranged in the hollow space (10) of the insulating body (1) and is soldered into the insulating body (1) in a vacuum-tight fashion. The front part (3) has a second metallic material whose heat conductivity is larger than that of the first metallic material. The high voltage vacuum feed through reliably remains vacuum-tight during operation and can be easily provided with different target materials.
Abstract:
An apparatus and method for determining the density and other properties of a formation surrounding a borehole using a high voltage x-ray generator. One embodiment comprises a stable compact x-ray generator capable of providing radiation with energy of 250 keV and higher while operating at temperatures equal to or greater than 125° C. In another embodiment, radiation is passed from an x-ray generator into the formation; reflected radiation is detected by a short spaced radiation detector and a long spaced radiation detector. The output of these detectors is then used to determine the density of the formation. In one embodiment, a reference radiation detector monitors a filtered radiation signal. The output of this detector is used to control at least one of the acceleration voltage and beam current of the x-ray generator.
Abstract:
A modular insulator assembly for an x-ray tube includes an annular insulator having a cylindrical perimeter wall, the insulator constructed of an electrically insulative material. A wall member is fixedly attached to and extending beyond the cylindrical perimeter wall, and a first shield positioned adjacent to the wall member and having an end extending proximate a corner formed by the wall member and the insulator.
Abstract:
A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.
Abstract:
A high voltage vacuum feed through (23) for an electron tube (25) has an anode (28) and an insulating body (1) of ceramic material, the insulating body (1) having a continuous hollow space (10). The anode (28) has a rear part (2) and a front part (3) mounted thereto. The rear part (2) consists of a first metallic material, having a thermal expansion coefficient corresponding to a thermal expansion coefficient of the ceramic material. The rear part (2) is arranged in the hollow space (10) of the insulating body (1) and is soldered into the insulating body (1) in a vacuum-tight fashion. The front part (3) has a second metallic material whose heat conductivity is larger than that of the first metallic material. The high voltage vacuum feed through reliably remains vacuum-tight during operation and can be easily provided with different target materials.
Abstract:
Ceramic metallization in an x-ray tube. In one example embodiment, a metalized ceramic plate for an x-ray tube includes a first side configured to reside inside an evacuated enclosure of an x-ray tube, a second side configured to reside outside the evacuated enclosure, a recess formed in the second side, feedthru openings that extend through the plate between the first side and the recess, and metallization formed around the perimeter of the recess and electrically connected to one of the feedthru openings.
Abstract:
Electrically insulating x-ray shielding devices in an x-ray tube. In one example embodiment, an x-ray tube includes an evacuated enclosure, a cathode and an anode at least partially positioned within the evacuated enclosure, and an electrically insulating x-ray shielding device proximate to the evacuated enclosure. The electrically insulating x-ray shielding device includes an oxide or nitride material having an atomic number from 57 to 74.
Abstract:
A monoblock X-ray generating device is provided. The device includes a rotor, a stator, an anode and a cathode positioned in a first module, the first module comprising a first cooling circuit. The device further includes a high voltage transformer positioned in a second module, the second module comprising a second cooling circuit. The first and second cooling circuits are positioned apart from each other, and one of the first and the second modules comprises a male connector and the other of the first and the second modules comprises a mating female connector.
Abstract:
An apparatus and method for determining the density and other properties of a formation surrounding a borehole using a high voltage x-ray generator. One embodiment comprises a stable compact x-ray generator capable of providing radiation with energy of 250 keV and higher while operating at temperatures equal to or greater than 125° C. In another embodiment, radiation is passed from an x-ray generator into the formation; reflected radiation is detected by a short spaced radiation detector and a long spaced radiation detector. The output of these detectors is then used to determine the density of the formation. In one embodiment, a reference radiation detector monitors a filtered radiation signal. The output of this detector is used to control at least one of the acceleration voltage and beam current of the x-ray generator.