Abstract:
An image input apparatus having a scanning surface used for scanning a document, the image input apparatus includes an image reading section for reading an image of the document facing the scanning surface; a position detection section for detecting a moving direction and a movement amount of the image input apparatus; and a control section for controlling the image reading section and the position detection section so that detection is performed by the position detection section in synchronization with image reading performed by the image reading section.
Abstract:
A scanning device comprising a scanning member provided for pathwise scanning a medium along a scanning path by means of a scanning beam, said scanning member and said medium being mutually movable with respect to each other, characterized in that said scanning member comprises a plurality of N scanning modules, each i.sup.th (1.ltoreq.i.ltoreq.N) scanning module being each time provided for scanning its assigned i.sup.th segment of said scanning path and an end point of a j.sup.th (1.ltoreq.j.ltoreq.N-1) segment corresponds with a starting point of a (j+1).sup.th segment, and wherein each i.sup.th scanning module comprises deviation determining means provided for determining on at least one position situated along said i.sup.th segment a cross-scan deviation between a predetermined scanning path and the path scanned by the scanning beam, said deviation determining means being connected with scanning beam steering means provided for determining upon receipt of said cross-scan deviation a first correction signal in such a manner -as to minimize said cross-scan deviation and for steering said scanning beam under control of said correction signal, and wherein said scanning beam steering means of a k.sup.th (1.ltoreq.k.ltoreq.N) scanning module being provided for starting the scanning of its assigned k.sup.th segment on an assigned time t.sub.k within a scanning period .DELTA.T for scanning the scanning path, the scanning beam steering means of each m.sup.th scanning module (k.noteq.m and 1.ltoreq.m.ltoreq.N) being provided for starting the scanning of their assigned m.sup.th segment on time ##EQU1## if m>k and ##EQU2## if m
Abstract:
The present invention is a novel raster output scanner (ROS) configuration that employs modulated laser diodes as the light source. Each laser diode is coupled to a dedicated driver that modulates the light beam according to digital video signal data. The present invention employs a single-channel acoustic-optic cell that deflects the multiple beams to maintain proper facet tracking. A single transducer is coupled to the single-channel acoustic-optic cell that generates the necessary acoustic wave to maintain proper tracking.
Abstract:
An image scanning and recording method for compensating for a pyramidal error of a mirror surface of a rotating body having at least two reflective mirror surfaces by fine-adjusting an angle of a light beam incident on the rotating body. A scanning lens is put in such a manner that an optical axis of the scanning lens is orthogonal to a rotating axis of the rotating body. An angle made of the incident light beam and a main scanning plate is controlled so that equations (I) and (II) are selectively fulfilled, the main scanning plane being orthogonal to the rotating axis and including the optical axis:tan .alpha.=tan2.delta..multidot.cos(a-b) (I).alpha.=2.delta..multidot.cos(a-b) (II)where a: a rotating angle of a normal line standing on each mirror surface with respect to the optical axis of the scanning lens, b: an angle made of the incident beam and the optical axis of the scanning lens on the main scanning plane, and .delta.: the pyramidal error of each mirror surface with respect to the rotating axis.
Abstract:
An imaging (e.g., lithographic) apparatus for generating an elongated concentrated scan image on an imaging surface of a scan structure (e.g., a drum cylinder) that moves in a process (cross-scan) direction. The apparatus includes a spatial light modulator having a two-dimensional array of light modulating elements for modulating a two-dimensional light field in response to predetermined scan image data, and an anamorphic optical system is used to anamorphically image and concentrate the modulated light onto an elongated imaging region defined on the imaging surface. To avoid smearing, movement of the imaging surface is synchronized by an image position controller with the modulated states of the light modulating elements such that image features of the scan image are scrolled (moved in the cross-scan direction) at the same rate as the cross-scan movement of the imaging surface, whereby the features remain coincident with the same portion of the imaging surface.
Abstract:
An imaging (e.g., lithographic) apparatus for generating an elongated concentrated scan image on an imaging surface of a scan structure (e.g., a drum cylinder) that moves in a process (cross-scan) direction. The apparatus includes a spatial light modulator having a two-dimensional array of light modulating elements for modulating a two-dimensional light field in response to predetermined scan image data, and an anamorphic optical system is used to anamorphically image and concentrate the modulated light onto an elongated imaging region defined on the imaging surface. To avoid smearing, movement of the imaging surface is synchronized by an image position controller with the modulated states of the light modulating elements such that image features of the scan image are scrolled (moved in the cross-scan direction) at the same rate as the cross-scan movement of the imaging surface, whereby the features remain coincident with the same portion of the imaging surface.
Abstract:
A light scanning device includes a semiconductor laser which emits a laser beam in response to an image forming signal, an optical deflector which scans the laser beam emitted from the semiconductor laser in a main scanning direction, and a liquid crystal deflecting element which changes the scanning position of the laser beam emitted from the semiconductor laser while desynchronized with output of the image forming signal, thereby to correct the scanning position of the laser beam in a sub-scanning direction.
Abstract:
An apparatus for correcting a scranning beam produced by a polygonal mirror tilting in small surface segments in each mirror surface segment caused by uneven mirror surfaces of the polygonal mirror. Data indicative of the amount of tilting in each of the surface segments is stored in a memory, which is addressed by a data signal indicative of the present scanning position of the polygonal mirror. Output data from the memory is applied to an acousto-optical modulator disposed in the beam path between the light source and the polygonal mirror.
Abstract:
A beam deflection system is provided with electrical circuitry for adaptively correcting the deflection of a beam of radiant energy in a scanning system incorporating a rotating scanning mirror to compensate for misalignment in facets of the mirror. With the use of an acousto-optic modulator providing a deflected beam at an angle dependent on the frequency of an acoustic drive signal, the orientation of the beam can be altered to compensate for the misaligned facets by varying the acoustic frequency. A sensor and bridge circuit signal the position of a beam scan. A memory stores the value of the frequency for scans by each facet, the value being altered with each scan to optimize the frequency. A drift compensation circuit provides for an averaging of the parameter values, and provides a voltage to adjust the balance of the bridge to drive the average value towards a reference value.
Abstract:
A light scanning device includes a semiconductor laser which emits a laser beam in response to an image forming signal, an optical deflector which scans the laser beam emitted from the semiconductor laser in a main scanning direction, and a liquid crystal deflecting element which changes the scanning position of the laser beam emitted from the semiconductor laser while desynchronized with output of the image forming signal, thereby to correct the scanning position of the laser beam in a sub-scanning direction.