Abstract:
A method for producing a fabricated vehicle wheel comprising the steps of: (a) providing a rim blank; (b) providing a first tooling fixture for subjecting the rim blank to a preforming operation wherein the cylindrical shape is reshaped to produce a rim preform; (c) providing a second tooling fixture defining a sealed internal chamber and having a tooling member having a predetermined inner surface contour, the sealed internal chamber in fluid communication with a source of high pressurize hydraulic fluid; (d) positioning the rim preform in the internal chamber with an outer surface thereof adjacent the inner surface contour of the tooling member; (e) supplying the high pressure hydraulic fluid to the internal chamber whereby the rim preform is pressed against the adjacent inner surface contour of the tooling member so as to produce a wheel rim having a contour which matches that of the inner surface contour of the tooling member; (f) removing the wheel rim from the second tooling fixture; and (g) securing the wheel rim to a wheel disc to produce the fabricated vehicle wheel.
Abstract:
A rotor and a method of making same are provided. The rotor can include a substantially annular segment having a thickness defined between a first side surface and a second side surface, as well as an inner end edge surface and an outer end edge surface. At least one expansion groove can be formed in the substantially annular segment, and can include a substantially straight portion and a substantially curved portion. The substantially curved portion of the at least one expansion groove can form an arc of at least about 90 degrees. The rotor can also include at least one flange extending from an inner end edge surface of the substantially annular segment at an angle not parallel to a radial of the substantially annular segment.
Abstract:
A method comprising: a step of preforming a plurality of bulging portions on a substantially circular plate blank, the bulging portions being located concentrically and circumferentially outward of a bolt hole, each of the bulging portions being a base of a reinforcing portion of a spoke; a step of forming a plurality of prototypical decorative holes on the respective bulging portions to form a prototypically-shaped spoke between the adjacent prototypical decorative holes; a step of forming a disk flange by bending an outer circumferential portion of the plate blank, on which the prototypical decorative holes are formed, at a right angle to be substantially parallel to a wheel axial direction, so that an outer periphery of a resultant decorative hole forms an upper end edge of the disk flange; and a step of forming the spoke by providing the prototypically-shaped spoke with the reinforcing portion.
Abstract:
Method and apparatus for forming a wheel hub by means of a casting process which involves providing additional material during the casting process at the perimeter of the hub in quantity sufficient to form a rim; spin-forming a rim about the hub using the additional material provided during the casting process; machining mounting features in the hub; and machining finish features into the rim.
Abstract:
Methods for forming a soft lip for a wheel rim are disclosed herein. The wheel rim may be a cold-formed, spun-formed, or rolled-formed cylindrical blank, wherein the blank includes an upturned outer edge. As the blank is spun, a blunting roller lowered to contact the upturned outer edge to blunt the outer edge into a work-strengthened annular bead, and finish off the external surface of the annular bead to form a soft lip.
Abstract:
For balancing a wheel, which is formed of a rolled plate having varying thickness, the wheel is provided with a disk which is formed by a rolled plate having varying thickness in the rolling direction, wherein wheel balance is adjusted by radially adjusting the angle between the location of the thick part of the disk and the location of the air valve insertion hole, and the location of the air valve insertion hole certainly accords with the heaviest point by conforming the location of the air valve insertion hole with the location of the thick part of the disk.
Abstract:
To balance the wheel which is formed of a rolled plate. A wheel having a disk which is formed by dividing the rolled plate into plural at the rolling direction, wherein balance of wheel is adjusted by controlling the angle between the direction which goes to the thick part from the center of the disk and the direction of the air valve insertion hole, and the direction of the air valve insertion hole is certainly accord with the heaviest point by agreeing the direction of the air valve insertion hole with the direction of the thick part.
Abstract:
Process for producing a motorized land vehicle wheel, in general having a wheel disk and an essentially cylindrical rim, the wheel disk being obtained from a blank plate of specific thickness subjected to several shaping operations, and composed of an essentially flat central part having an opening that serves to center and attach the wheel to the vehicle's axle hub, an essentially conical interior riser, another inverted conical part that defines, with the interior riser, a curved tip that has a large radius of curvature, the inverted conical part terminating in a flanged edge used to join the disk to the rim, a process characterized in that during the forming operation of the flanged edge, the plate is laminated in such a way as to preserve or reduce the thickness of the base plate.
Abstract:
A method and apparatus, and a modified wheel made thereby for varying the wheel offset dimension of an automotive vehicle full face wheel of the type disclosed and claimed in U.S. Pat. No. 4,610,482 and having a predetermined first wheel offset dimension. The disc-rim part is formed in progressive die tooling of a transfer press operable for multiple stage successive forming, from a flat circular blank, the disc-rim part into the final die formed shape thereof having the given styling configuration. A wheel offset shift zone portion is first selected in the disc-rim part, consisting of the outer peripheral portion and/or the central bolt circle mounting portion of this part. The selected portion is shifted axially of the wheel a predetermined distance to thereby provide a second predetermined wheel offset dimension, different from the first such dimension, when the disc-rim part is joined to the rim. Then a corresponding predetermined wheel forming offset dimensional change modification is made in the first draw stage of the press tooling. A spacer is provided having a predetermined selected thickness dimension sized and installed to shift only a selected portion of the tooling and utilized in the draw stage to form shift the selected offset zone of the disc-rim by a distance corresponding to the difference between the first and second wheel offset dimensions. Corollary spacers are likewise installed in the remaining successive stages of the transfer press tooling in those areas engaging the selected offset shift zone to thereby accommodate the first draw stage offset change.
Abstract:
A method and apparatus (50 or 110) for forming bolt and center-pilot mounting openings (36, 30) in vehicle wheels (16 or 112), particularly styled-disc vehicle wheels. A preformed rim and disc assembly is engaged and fixtured around the rim bead seat (20, 22) with the inboard disc face resting on a lower die assembly (82) and without plastic deformation to the rim or disc. An upper die assembly (52) having an array of bolt hole punches (56) is moved into piercing-and-coining engagement with the disc to form the bolt openings. Continued motion of the upper die assembly pushes the disc and lower die assembly into shearing engagement with a center punch (76or 76a or 76b) which forms the center-pilot opening. The axes (BH, CH, BS) of the bolt openings and/or center-pilot opening and/or bead seats may be aligned or offset from each other.