摘要:
A method of manufacturing a thermally actuated ink jet printhead includes the step of initially providing a wafer having a circuitry layer including the electrical circuitry necessary for the operation of a thermal actuator. A first sacrificial layer is deposited on the wafer and is etched. A Young's modulus layer is deposited to form a first layer of a thermal actuator and a portion of a nozzle chamber wall. A conductive heater material layer is provided and has a portion interconnected to the circuitry layer. A second sacrificial layer is deposited and etched in preparation for nozzle chamber walls. A nozzle wall material layer is deposited to form the walls of the nozzle chamber. The nozzle wall material layer is etched to define a nozzle port for the ejection of ink. The sacrificial layers are etched away to release the thermal actuator. The nozzle chamber walls are formed to define a fulcrum for the thermal actuator.
摘要:
A printhead for an ink jet printer with an array 14 of ink ejection nozzles 22 formed from MEMS techniques. To protect the delicate nozzle structures, a nozzle guard 80 covers the exterior surface of the array 14. A corresponding array of apertures 84 is formed in the guard 80. To attach the guard 80 to the silicon substrate 16 carrying the nozzles 22, alignment formations 148 configured for engagement with complementary formations on a nozzle guard 86. For precise registration between the nozzles 22 and the respective apertures 86 in the guard 80, the alignment formations 148 may be formed using the same etching and deposition techniques used to form the nozzles 22. To protect the fragile nozzle structures 22 from inadvertent contact with the struts 86 during assembly, the nozzles 22 are reinforced by sacrificial material 152 which subsequently removed by an oxygen plasma etch 154.
摘要:
In a semiconductor device in which a switching element for allowing a current to flow to a load and a circuit for driving the switching element are formed on a common substrate, the switching element is formed of a DMOS transistor, and the circuit for driving the switching element includes an MOS transistor having a characteristic different from that of the DMOS transistor.
摘要:
A heater chip for use in an inkjet printer which includes a single conductive layer to provide electrical connectivity between power and ground inputs. Wherein the unique power distribution architecture is possible by the formation of a plurality of ink vias in the heater chip which provides for an increase in the chip surface area available for electrical connectivity.
摘要:
There are provided an apparatus for fine pattern formation, which can form a fine pattern with high accuracy by direct writing with ink, a production process of fine nozzles provided in the apparatus for fine pattern formation, and a method for fine pattern formation. Fine pattern formation with high accuracy could have been realized by the apparatus for fine pattern formation, comprising: a silicon substrate; a plurality of fine holes which extend through the silicon substrate from the surface of the silicon substrate to the back surface of the silicon substrate and have a silicon oxide layer on the wall surface thereof; fine nozzles which are protruded, integrally with the silicon oxide layer, on the back surface side of the silicon substrate from each opening of the fine holes; a silicon nitride layer provided on the surface and side of the silicon substrate; a support member provided on the surface side of the silicon substrate; an ink passage for supplying ink to the opening of each fine hole on the surface side of the silicon substrate; and an ink supplying device connected to the ink passage.
摘要:
A continuous ink jet print head is formed using a combination of traditional CMOS technology to form the various controlling electrical circuits on a silicon substrate having insulating layer(s) which provide electrical connections and a MEMS technology for forming nozzle openings. A blocking structure is formed in the insulating layer(s) between a first ink channel formed in the silicon substrate and a second ink channel formed in the insulating layer(s). The blocking structure causes ink to flow around the blocking structure and thereby develop lateral flow components to the liquid entering the second channel so that, for droplets selected for printing, as the stream of droplets emanates from the bore of the nozzle, there is provided a reduced amount of heat needed for operating a heating element adjacent each nozzle opening.
摘要:
A liquid emission device includes a chamber having a nozzle orifice. Separately addressable dual electrodes are positioned on opposite sides of a central electrode. The three electrodes are aligned with the nozzle orifice. A rigid electrically insulating coupler connects the two addressable electrodes. To eject a drop, an electrostatic charge is applied to the addressable electrode nearest to the nozzle orifice, which pulls that electrode away from the orifice, drawing liquid into the expanding chamber. The other addressable electrode moves in conjunction, storing potential energy in the system. Subsequently the addressable electrode nearest to the nozzle is de-energized and the other addressable electrode is energized, causing the other electrode to be pulled toward the central electrode in conjunction with the release of the stored elastic potential energy. This action pressurizes the liquid in the chamber behind the nozzle orifice, causing a drop to be ejected from the nozzle orifice.
摘要:
A span lock system for a double-leaf drawbridge. A guide housing mounted at the tip of one leaf includes an opening with vertically opposed cushioned shoes slidably supporting an elongate lock bar reciprocative lengthwise in a direction along the length of the drawbridge. A receiver housing mounted at the tip of the other leaf is positioned to interlock with the guide housing and includes a like opening slidably receiving the lock bar between vertically opposed cushioned shoes. A pair of vertical guide columns project from both side of the guide housing opening with the upper and lower edges of the distal sides beveled inwardly, and another pair of vertical guide columns project from both side of the receiver housing opening with the upper and lower edges of the proximal sides beveled outwardly. Within a specified maximum limit of misalignment, the guide and receiver columns interengage causing their openings to closely align and facilitate insertion of the lock bar into the opening of the receiver housing with limited horizontal bending and shear. The distance between the proximal sides of the receiver housing exceeds the distance between the distal sides of the guide housing by an amount corresponding to the specified maximum misalignment for a particular bridge design. The housings are secured to the bridge trusses by vertical columns of bolts and the cushioned shoes are biased by disc springs mounted on guide pins.
摘要:
A method for manufacturing an ejection head (10) or ejector suitable for ejecting in the form of droplets (16) a liquid (14) conveyed inside the ejection head (10), comprising a step of producing, from a silicon wafer, a nozzle plate (12) having at least one ejection nozzle (13); a step of producing, from another silicon wafer, a substrate (11) having at least one actuator (15) for activating the ejection of the droplets of liquid through the nozzle (13); and a step of joining the nozzle plate (12) and the substrate (11) together to form the ejection head, wherein this joining step comprises the production of a junction (25), made by means of the anodic bonding technology, between the substrate (11) and the nozzle plate (12), in such a way that, in the area of this junction (25), the ejection head (10) does not present structural discontinuities, and also possesses a resistance to chemical corrosion by the liquid (14) contained in the ejection head (10) at least equal to that of the silicon constituting both the substrate (11) and the nozzle plate (12). The method of the invention may be applied for manufacturing an ink jet printhead (110), having one or more nozzles (113a, 113b, etc.), which has the advantage, with respect to the known printheads, of also being suitable for working with special inks characterized by high level chemical aggressiveness. In general, the ejection head of the invention, thanks to its structure which is globally highly robust and also chemically inert in the area of the junction (25), can be used advantageously with various types of liquids, even with marked chemical aggressiveness, in different sectors of the art, for example for ejecting paints on various types of media, generally not paper, in the industrial marking sector; or for ejecting in a controlled way droplets of fuel, such as petrol, in an internal combustion engine.
摘要:
A first gap formation member and a fixed portion are provided on an element substrate, a movable member is formed on the first gap formation member and the fixing member, and a second gap formation member is formed thereon. The first gap formation member is removed, a wall material is coated and exposed at a pattern mask. The wall material is patterned to form the liquid flow path walls and the liquid supply ports altogether, and removing the second gap formation member, hence making it easier to form the side stopper that supports the movable member stably in a state where the displacement of the movable member is regulated to close the liquid supply port, as well as the minute gap between the movable member and the side stopper in higher precision.