摘要:
Methods and systems for the electrochemical conversion of halogenated compounds are provided. In some embodiments, a method comprises converting a halogenated compound (e.g., fluorinated gas) to relatively non-hazardous products via one or more electrochemical reactions. The electrochemical reaction(s) may occur under relatively mild conditions (e.g., low temperature) and/or without the aid of a catalyst. In some embodiments, the electrochemical reaction may produce a relatively large amount of energy. In some such cases, systems, described herein, may be designed to facilitate the conversion of the halogenated compound (e.g., SF6, NF3) while harnessing (e.g., storing, converting) the energy associated with the electrochemical reaction. System and methods described herein may be used in a wide variety of applications, including waste management (e.g., environmental remediation, greenhouse gas mitigation), energy recovery (e.g., industrial energy recovery), and primary batteries (e.g., metal-gas batteries).
摘要:
Underwater apparatuses and methods of operating underwater apparatuses. The apparatus includes a power source such as an aluminum-water cell. Waste product from the power source may be channeled into various portions of the apparatus to adjust the buoyancy of the apparatus, the center of buoyancy of the apparatus, and/or the trim of the apparatus.
摘要:
A metal-air battery including a cathode including a metal; an anode including a composite conductive material; a solid electrolyte layer between the cathode and the anode; and a vapor supplier configured to supply a vapor to the anode and the solid electrolyte layer.
摘要:
The invention includes a method of making a catalytic electrode for a metal-air cell in which a carbon-catalyst composite is produced by heating a manganese compound in the presence of a particulate carbon material to form manganese oxide catalyst on the surfaces of the particulate carbon, and then adding virgin particulate carbon material to the carbon-catalyst composite to produce a catalytic mixture that is formed into a catalytic layer. A current collector and an air diffusion layer are added to the catalytic layer to produce the catalytic electrode. The catalytic electrode can be combined with a separator and a negative electrode in a cell housing including an air entry port through which air from outside the container can reach the catalytic electrode.
摘要:
The invention relates to an oxygen-consuming electrode, in particular for use in chloralkali electrolysis, comprising a novel catalyst coating based on carbon nanotubes and a silver-based cocatalyst, and to an electrolysis device. The invention further relates to a method for producing said oxygen-consuming electrode and to the use thereof in chloralkali electrolysis or fuel cell technology.
摘要:
An anaerobic aluminum-water electrochemical cell is provided. The electrochemical cell includes: a plurality of electrode stacks, each electrode stack including an aluminum or aluminum alloy anode, and at least one cathode configured to be electrically coupled to the anode; one or more physical separators between each electrode stack adjacent to the cathode; a housing configured to hold the electrode stacks, an electrolyte, and the physical separators; a water injection port, in the housing, configured to introduce water into the housing, and an amount of hydroxide base sufficient to form an electrolyte having a hydroxide base concentration of at least 0.5% to at most 13% of the saturation concentration when water is introduced between the anode and the least one cathode. The aluminum or aluminum alloy of the anode is substantially free of titanium and boron.
摘要:
An anaerobic aluminum-water electrochemical cell is provided. The electrochemical cell includes: a plurality of electrode stacks, each electrode stack comprising an aluminum or aluminum alloy anode, and at least one cathode configured to be electrically coupled to the anode and having a surface characterized by an electrochemical roughness factor of at least 5 and a mean pore diameter of at least 50 μm; one or more physical separators between each electrode stack adjacent to the cathode; a housing configured to hold the electrode stacks, an electrolyte, and the physical separators; and a water injection port, in the housing, configured to introduce water into the housing.
摘要:
The invention relates to a reversible electrochemical system intended to operate alternately in electrolysis cell mode and in fuel cell mode, comprising: a primary device of which: the primary anode (13) is suitable for carrying out an oxidation of the water (OER) originating from a first anode port and an oxidation of the hydrogen (HOR) originating from a second anode port, and the primary cathode (15) is suitable for carrying out a reduction of protons (HER), and a reduction of oxygen (ORR) originating from a second cathode port; a secondary device of which: the secondary anode (23) is suitable for carrying out an oxidation of hydrogen (HOR) originating from the primary anode and an oxidation of hydrogen (HOR) originating from the second anode port; the secondary cathode (25) is suitable for carrying out a reduction of protons (HER) and a reduction of oxygen (ORR) originating from the second cathode port.
摘要:
An electrolyte for a lithium air battery and lithium air battery including the electrolyte are provided. The electrolyte includes a compound represented by Formula 1 and a lithium salt:
摘要:
An oxygen permeable film including an aggregate of water-repellent particles and having an average particle size of the particles of 0.01 to 50 μm has a contact angle with water of not less than 120° and super water repellency, and therefore has an excellent water vapor permeation inhibiting capability. As the particles, fluorocarbon resins such as polytetrafluoroethylene, polyvinyl fluoride and polyvinylidene fluoride are suitable. The specific surface area of the oxygen permeable film is preferably not less than 0.1 m2/g and not more than 500 m2/g.