Abstract:
An efficient method of fabricating a high-quality heteroepitaxial microstructure having a smooth surface. The method includes detaching a layer from a base structure to provide a carrier substrate having a detached surface, and then forming a heteroepitaxial microstructure on the detached surface of the carrier substrate by depositing an epitaxial layer on the detached surface of a carrier substrate. Also included is a heteroepitaxial microstructure fabricated from such method.
Abstract:
A method of producing a substrate that has a transfer crystalline layer transferred from a donor wafer onto a support. The transfer layer can include one or more foreign species to modify its properties. In the preferred embodiment an atomic species is implanted into a zone of the donor wafer that is substantially free of foreign species to form an embrittlement or weakened zone below a bonding face thereof, with the weakened zone and the bonding face delimiting a transfer layer to be transferred. The donor wafer is preferably then bonded at the level of its bonding face to a support. Stresses are then preferably applied to produce a cleavage in the region of the weakened zone to obtain a substrate that includes the support and the transfer layer. Foreign species are preferably diffused into the thickness of the transfer layer prior to implantation or after cleavage to modify the properties of the transfer layer, preferably its electrical or optical properties. The preferred embodiment produces substrates with a thin InP layer rendered semi-insulating by iron diffusion.
Abstract:
A method of forming an epitaxially grown layer, preferably by providing a region of weakness in a support substrate and transferring a nucleation portion to the support substrate by bonding. A remainder portion of the support substrate is detached at the region of weakness and an epitaxial layer is grown on the nucleation portion. The remainder portion is separated or otherwise removed from the support portion.
Abstract:
A method for minimizing or avoiding contamination of a receiving handle wafer during transfer of a thin layer from a donor wafer. This method includes one step of providing a donor wafer and a receiving handle wafer, each having a first surface prepared for bonding and a second surface, with the donor layer including a zone of weakness that defines a thin layer of donor wafer material to be transferred to the receiving handle wafer. Next, at least one of the first surfaces is treated to provide increased bonding energy when the first surfaces are bonded together; the surfaces are then bonded together to form an intermediate multilayer structure; and the thin layer is transferred to the receiving handle wafer to form a final multilayer structure by detachment at the zone of weakness and removal of remaining material of the donor wafer. This method avoids or minimizes contamination of the second surface of the receiving handle wafer by treating only the first bonding surface of the donor wafer prior to bonding, or by cleaning contamination from the second surface of the handle receiving wafer when present in the intermediate multilayer structure prior to detachment of the thin layer.
Abstract:
A method of manufacturing a wafer using a support substrate of a crystalline material. On the surface of the support substrate, a layer of a diamond is grown to form a first wafer in combination with the support substrate. A further substrate is bonded to the surface of the diamond layer, and a region of weakness is formed within the first wafer or the further substrate. Energy is then applied at the region of weakness to detach the structure into a first portion and a second portion.
Abstract:
A method of forming an epitaxially grown layer, preferably by providing a region of weakness in a support substrate and transferring a nucleation portion to the support substrate by bonding. A remainder portion of the support substrate is detached at the region of weakness and an epitaxial layer is grown on the nucleation portion. The remainder portion is separated or otherwise removed from the support portion.
Abstract:
A substrate suitable for producing a high frequency electronic circuit. This substrate includes a support substrate having a controlled amount of interstitial oxygen and which is treated to precipitate at least some of the oxygen therein; and a useful layer supported by the support substrate. Advantageously, the support substrate has high resistivity and includes oxygen precipitates beneath the useful layer while also being free of depleted zones of oxygen precipitates adjacent the useful layer. This is prepared by the methods disclosed herein which are applicable in particular to SOI substrates.
Abstract:
The invention provides methods for applying high temperature treatments to semiconductor wafers that limit surface tearing-off defects and surface particle contamination. In preferred embodiments, the high temperature treatments begin at boat-in temperatures of less than about 550° C. and include a first temperature ramp-up to the HT treatment temperatures at rates of 6° C./min or less. These methods are advantageously applied to semiconductor wafers comprising layers of different thermal properties, and in particular to semiconductor wafers comprising silicon-on-insulator structures.
Abstract:
A method of fabricating a hybrid substrate by direct bonding of donor and receiver substrates where each substrate has a respective front face and surface, with the front face of the receiver substrate having a semiconductor material near the surface, and the donor substrate including a zone of weakness that defines a layer to be transferred. The method includes preparing the substrate surfaces by exposing the surface of the receiver substrate to a temperature from about 900° C. to about 1200° C. in an inert atmosphere for at least 30 sec; directly bonding together the front faces of the prepared substrates to form a composite substrate; heat treating the composite substrate to increase bonding strength between the front surfaces of the donor and receiver substrates; and transferring the layer from the donor substrate by detaching the remainder of the donor substrate at the zone of weakness.
Abstract:
Methods are disclosed for preparing a reconditioned donor substrate by providing a remainder substrate from a donor substrate wherein the remainder substrate has a detachment surface where a transfer layer was detached and an opposite surface; and depositing an additional layer onto the opposite surface of the remainder substrate to increase its thickness and to form a reconditioned substrate. The reconditioned substrate is recycled as a donor substrate for fabricating compound material wafers.