Abstract:
The present invention relates to transmit power allocation in multi-carrier, multiplexing MIMO communication systems. The present invention especially relates to a MIMO communication device, a method of assigning transmit power to two or more communication channels and a software program product. A multiple-input-multiple-output, MIMO, communication device according to the present invention comprises a link controller adapted to assign transmit power to two or more transmission channels, each of said transmission channels having preassigned a portion of transmit power for each of a group of subcarriers, said link controller being further adapted to assign, for each subcarrier of said group of subcarriers, at least part of the preassigned transmit power portion of a transmission channel that is not used for transmitting information at the subcarrier, to one or more transmission channels that are used for transmitting information at the subcarrier.
Abstract:
OFDM generation apparatus and methods generating OFDM transmission signals from OFDM symbols, each including a plural OFDM subcarriers, for transmission in a multi-carrier data transmission system. In OFDM systems using the concept of Absolute OFDM and/or using Segmented OFDM common phase rotations of the OFDM subcarriers of the OFDM symbol with respect to adjacent OFDM symbols of the OFDM transmission signal generally appear. To avoid or compensate those common phase rotations, in the apparatus and method a selected mixing frequency is used for mixing the complex time-domain samples of the OFDM symbol from a baseband frequency up to a passband frequency by use of a mixing frequency to obtain the OFDM transmission signal, wherein the mixing frequency is selected such that common phase rotations of the OFDM subcarriers of the OFDM symbol with respect to adjacent OFDM symbols of the OFDM transmission signal are avoided or compensated after the mixing.
Abstract:
A method for identifying an electrical device connected to a mains grid is provided, the method comprising measuring at least one electrical characteristic on the mains grid with a sensor connected to a socket of the mains grid; comparing the at least one electrical characteristic with a plurality of stored candidate electrical characteristics each corresponding to one of a plurality of candidate electrical devices; and identifying the electrical device based on the stored candidate electrical characteristic that is closest to the at least one electrical characteristic. A corresponding system and a corresponding sensor are provided as well.
Abstract:
A transmission apparatus and method for transmitting data within a multi-carrier transmission system including two or more transmission apparatuses configured to transmit same data. To avoid destructive interferences the transmission apparatus includes a signal input configured to receive multi-carrier signals carrying data to be transmitted, a distortion unit configured to distort the multi-carrier signals by use of a distortion function including a phase parameter for differently modulating phase of the multi-carrier signals, the distortion function being different from distortion functions used by other transmission apparatuses, whose coverage areas overlap with the coverage area of the present transmission apparatus, by using a phase parameter different from the phase parameter used by the other transmission apparatuses, and a transmission unit configured to transmit the distorted multi-carrier signals as a transmission signal.
Abstract:
A transmitting apparatus for transmitting signals in a multi carrier system on the basis of a frame structure, each frame comprising at least two preamble patterns adjacent to each other in the frequency direction and at least two data patterns, said transmitting apparatus comprising a pilot mapper configured to map the same sequence of pilot signals on frequency carriers of each of said at least two preamble patterns in a frame, each preamble pattern having the same length, a data mapper configured to map data on frequency carriers of said at least two data patterns in a frame a transformer configured to transform said preamble patterns and said data patterns from the frequency domain into the time domain in order to generate a time domain transmission signal, and a transmitter configured transmit said transmission signal.
Abstract:
A transmitting apparatus for transmitting signals in a multi carrier system on the basis of a frame structure, each frame including at least two signalling patterns adjacent to each other in the frequency direction and at least two data patterns, the transmitting apparatus including signalling mapping means to map signalling data on frequency carriers of each of the at least two signalling patterns in a frame, each signalling pattern having the same length, data mapping means to map data on frequency carriers of the at least two data patterns in a frame, transforming means to transform the signalling patterns and the data patterns from the frequency domain into the time domain in order to generate a time domain transmission signal, and transmitting means to transmit the transmission signal. A corresponding transmitting method and a frame pattern for a multi carrier system are also provided.
Abstract:
A transmitting apparatus for transmitting signals in a multi carrier system on the basis of a frame structure, each frame including at least one signalling pattern and one or more data patterns, said transmitting apparatus including frame forming means for arranging first signalling data in the at least one signalling pattern in a frame, and adapted to arrange data in the one or more data patterns in a frame, whereby the data of the one or more data patterns are arranged in data frames, each data frame comprising second signalling data and content data, transforming means for transforming the at least one signalling pattern and the one or more data patterns from the frequency domain into the time domain in order to generate a time domain transmission signal, and transmitting means for transmitting the time domain transmission signal.
Abstract:
A method for receiving signals over a power line network, within the power line network at least one transmitter and at least one receiver communicate via at least two channels, each of the channels having a respective feeding port of the at least one transmitter and a respective receiving port of the at least one receiver, and the receiver having at least two receiving ports. The method determines a channel characteristic of each of the channels, applies a receiving port selection criterion based on the channel characteristic, and selects an excluded receiving port among the at least two receiving ports based on the receiving port selection criterion, the excluded receiving port is not used during further communication.
Abstract:
A method for transmitting a signal from a transmitter over a channel to a receiver on a Power Line Network, wherein said signal is OFDM-modulated on a set of sub-carriers, is proposed, wherein an OFDM tonemap and an eigenbeamforming encoding matrix are determined based on a channel estimation for each sub-carrier, a tonemap feedback signal and an eigenbeamforming feedback signal are generated, which are descriptive of said OFDM tonemap and said eigenbeamforming encoding matrix, respectively, and transmitted to the transmitter. A corresponding receiver, a transmitter, a power line communication and a power line communication system are described as well.
Abstract:
A method for receiving signals over a power line network, within the power line network at least one transmitter and at least one receiver communicate via at least two channels, each of the channels having a respective feeding port of the at least one transmitter and a respective receiving port of the at least one receiver, and the receiver having at least two receiving ports. The method determines a channel characteristic of each of the channels, applies a receiving port selection criterion based on the channel characteristic, and selects an excluded receiving port among the at least two receiving ports based on the receiving port selection criterion, the excluded receiving port is not used during further communication.