Abstract:
A nanoelectromechanical device is provided. The nanoelectromechanical device includes a nanotube, a first contact, and a first actuator. The nanotube includes a first end, the first end supported by a first structure, a second end opposite the first end, and a first portion. The first actuator is configured to apply a first force to the nanotube, the first force causing the nanotube to buckle such that the first portion couples to the first contact.
Abstract:
Systems, devices, and methods are described including implantable radiation sensing devices having exposure determination devices that determines cumulative exposure information based on the at least one in vivo measurand.
Abstract:
A computationally implemented method includes, but is not limited to: determining a behavioral fingerprint associated with a network accessible user of one or more devices, the behavioral fingerprint providing a current status of the network accessible user; and disabling the one or more devices automatically as a function of the determined behavioral fingerprint. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present disclosure.
Abstract:
Exemplary methods, systems and components enable detection and/or monitoring and/or control of electromagnetic radiation (EMR) exposure of target body-related portions of a user operating a telecommunication device. In some embodiments a risk-assessment output is provided based on a safety threshold or predetermined intrusion level of EMR exposure. A further aspect may include interaction with external EMR sources regarding possible modification of emissions as well as possible arrangements for other types of remedial action.
Abstract:
Described embodiments include a system and a method. A conversion table correlates each digit of the conversion table base system to a respective machine recognizable feature in an ultrasound echo response by a respective micro-object of a set at least two ultrasound-differentiable micro-objects (hereafter “set of micro-objects). An encoding apparatus encodes a data set into machine recognizable features of at least two micro-objects of the set of micro-objects pursuant to the conversion table. A selector apparatus picks from a physical set of the micro-objects at least two micro-objects having the machine recognizable features corresponding to the encoded data set. Each micro-object of the physical set of micro-objects is biocompatible and suitable for implantation in a vertebrate subject. Each micro-object while implanted returns an ultrasound echo having a machine recognizable feature differentiating the micro-object over each other micro-object of the set of micro-objects.
Abstract:
Described embodiments include a system. A described system includes a set of at least two biocompatible and ultrasound-differentiable micro-objects suitable for implantation in a vertebrate subject. Each micro-object of the set of micro-objects while implanted respectively returning an echo response to an applied ultrasound energy having a machine recognizable feature differentiating the micro-object over each other micro-object of the set of micro-objects (hereafter “set of micro-objects”). The system includes a conversion table correlating each digit of the conversion table base system with a respective machine recognizable feature in an echo response to an ultrasound energy applied to a micro-object of the set of micro-objects. In an embodiment, the system includes a packaging material carrying the set of micro-objects and the conversion table.
Abstract:
Computer-based systems and computer-implemented methods are described for monitoring medication events for an individual. Computer-based systems include systems for monitoring medication events relating to an individual, including: circuitry for analyzing data for an identifier of a first medication event for an individual; circuitry for analyzing the data for at least one attribute of an individual; circuitry for analyzing the data for at least one attribute relating to a medication during the first medication event; circuitry for analyzing the data for at least one feature of visual information and at least one feature of non-visual information relating to the individual during the first medication event; circuitry for analyzing the received data for a time associated with the first medication event; circuitry for determining a compliance likelihood for the first medication event based on the analyses of the received data; and circuitry for indicating the determined compliance likelihood.
Abstract:
Lumen-traveling biological interface devices and associated methods and systems are described. Lumen-traveling biological interface devices capable of traveling within a body lumen may include a propelling mechanism to produce movement of the lumen-traveling device within the lumen, electrodes or other electromagnetic transducers for detecting biological signals and electrodes, coils or other electromagnetic transducers for delivering electromagnetic stimuli to stimulus responsive tissues. Lumen-traveling biological interface devices may also include additional components such as sensors, an active portion, and/or control circuitry.
Abstract:
Wearable injection guides and manufacture and use thereof are described, which include: a rigid material formed to substantially conform in shape to a topography of a body region of an individual, the rigid material substantially impenetrable to an injection needle, and the rigid material including one or more injection needle access regions arranged in a treatment pattern.