Abstract:
Provided is a photodetection device which is small in size and has excellent sensitivity. A photodetection device puts cathode terminals of photodiodes having different spectral characteristics into an open end state, and detects light intensity of a desired wavelength region according to a difference in electric charges that have been stored in those photodiodes in a given period of time. The photodiodes employ a system of storing electric charges, and hence even if a photocurrent is small, the photocurrent may be stored to obtain the electric charges required for detection, and the downsizing and high detection performance of a semiconductor device that forms the photodiodes may be achieved. Further, a wide dynamic range may be realized with an electric charge storage time being variable according to the light intensity, to intermittently drive an element required for difference detection at the time of difference detection so as to suppress electric power consumption, or to average the output so as to reduce flicker.
Abstract:
Provided is an illuminance sensor in which a consumption current is independent of an illuminance level of incident light. Amplifiers (21 to 24) and a subtraction circuit (25) are driven by a constant current source (not shown). The subtraction circuit (25) outputs a differential voltage between output voltages of a photodetector element (15) and a photodetector element (16). Based on the differential voltage, a sample/hold circuit (30) performs sampling or holding of a voltage at one end of a capacitor (13). A switch (28) is ON when an output voltage of the subtraction circuit (25) starts to change, thereby fixing the voltage at the one end of the capacitor (13) to a reference voltage.
Abstract:
In order to provide a speed change transmission system which can be obtained compactly, while obtaining output at steplessly varied speeds over a large speed change range only by carrying out a simple shifting operation, the speed change transmission system has a hydrostatic stepless transmission to which engine drive is inputted. A planetary transmission device (P) has a plurality of planetary transmission mechanisms, for combining output of the stepless transmission and engine drive not undergoing speed change action by the hydrostatic stepless transmission. A plurality of transmission shafts are provided with a plurality of speed range setting clutches, switchable for converting the combined driving force from the planetary transmission device (P) to a driving force in a plurality speed ranges, and transmitting it to an output rotary member. The plurality of transmission shafts are juxtaposed and arranged in parallel.
Abstract:
The information terminal body may be designed to foldably pivot a pair of flat cases each having a display unit through a hinge which is equipped with a photographing optical system for the camera function unit of which optical axis of lens is perpendicular to an axial center of the hinge. The display units display information from communication channels and images taken in by the camera. The cases may have the display units such that the display units face outside in a folded state. At least one of the two display units may be a finder for photographers, while the other may be a finder for the subject persons. The terminal is equipped with a shutter button and a terminal operation button. The terminal operation button works also as a shutter button. The information terminal is also equipped with a viewfinder for the camera lens system.
Abstract:
To provide a photoelectric conversion device with low noise at low cost. The photoelectric conversion device includes: a plurality of photoelectric conversion circuits whose output potentials change according to an amount of incident light; a plurality of reset circuits each connected to an output of each of the photoelectric conversion circuits; a plurality of amplification circuits for amplifying the output potentials of the photoelectric conversion circuits, the amplification circuits each being connected to the output of each of the photoelectric conversion circuits; a plurality of signal read circuits for reading the outputs from the amplification circuits; and a plurality of holding circuits for temporarily holding the read outputs from the amplification circuits.
Abstract:
An image reader is constituted by an image sensor having a plurality of image sensor ICs mounted therein linearly, wherein the plurality of image sensor ICs are divided into a plurality of blocks to read image signals of the blocks in the same period, and adjacent light receiving elements of the adjacent image sensor ICs between the blocks are arranged so as to be spaced from each other in a sub-scanning direction in such a way that the reading areas of the image signals which are to be read in the same period in the sub-scanning direction become identical to each other. Thus, no continuousness of an image is distorted even in a joint between the adjacent blocks.
Abstract:
A photoelectric converter has a first semiconductor region having a first conductivity type, a pixel region for accumulating generated carriers, a second semiconductor region having a second conductivity type disposed within the first semiconductor region and inside the pixel region, an electrode region having the second conductivity type disposed on the second semiconductor region, and an oxide film disposed around the electrode region. A first aluminum wiring contacts the electrode region via a contact hole disposed in an intermediate insulating film for transforming a signal according to a quantity of the generated carriers accumulated in the pixel region. A second aluminum wiring encircles an outer periphery of the pixel region and is held at a predetermined constant potential. A transparent conductive film is disposed on the oxide film and inside the second semiconductor region and contacts the second aluminum wiring.
Abstract:
To provide a photoelectric conversion device with low noise at low cost. The photoelectric conversion device includes: a plurality of photoelectric conversion circuits whose output potentials change according to an amount of incident light; a plurality of reset circuits each connected to an output of each of the photoelectric conversion circuits; a plurality of amplification circuits for amplifying the output potentials of the photoelectric conversion circuits, the amplification circuits each being connected to the output of each of the photoelectric conversion circuits; a plurality of signal read circuits for reading the outputs from the amplification circuits; and a plurality of holding circuits for temporarily holding the read outputs from the amplification circuits.
Abstract:
The information terminal body may be designed to foldably pivot a pair of flat cases each having a display unit through a hinge which is equipped with a photographing optical system for the camera function unit of which optical axis of lens is perpendicular to an axial center of the hinge. The display units display information from communication channels and images taken in by the camera. The cases may have the display units such that the display units face outside in a folded state. At least one of the two display units may be a finder for photographers, while the other may be a finder for the subject persons. The terminal is equipped with a shutter button and a terminal operation button. The terminal operation button works also as a shutter button. The information terminal is also equipped with a viewfinder for the camera lens system.
Abstract:
A work vehicle has an engine (1), a PTO shaft (6, 7) driven by power from the engine, an operator's seat (19), an operator's presence sensor (26) for detecting presence/absence of an operator at the operator's seat, and an automatic engine stop unit (39) operable to automatically stop the engine in response to detection of the operator's absence at the operator's seat. The work vehicle includes a utility member (A) for the vehicle selectively movable between a use position and a non-use position, a non-use state detecting sensor (27) for detecting movement of the utility member to the non-use position, and an override unit (40) operable to override the automatic engine stop function of the automatic engine stop unit, the override unit providing an override signal to the automatic engine stop unit in response to detection by the non-use state detecting sensor of the movement of the utility member to the non-use position.