Abstract:
A shock absorber for a vehicle includes a pressure tube that defines a fluid chamber. A piston disposed within the fluid chamber divides the fluid chamber into an upper working chamber and a lower working chamber. The piston defines a compression passage and a rebound passage which extend through the piston between the upper working chamber and the lower working chamber. A valve disc assembly engages the piston and controls the flow of fluid between the upper working chamber and the lower working chamber. The valve disc assembly includes a bleed disc that defines an orifice with a substantially non-linear contour. The orifice extends to an outer diameter of the bleed disc, and forms a bleed channel between the upper working chamber and the lower working chamber.
Abstract:
A shock absorber has a valve assembly having a valve that is biased away from a valve body. A controlled restriction is defined between the valve and the valve body. During stroking of the piston of the shock absorber, the valve moves toward the valve body to close the restriction. The valve assembly can be used in the piston assembly, the base valve assembly or both.
Abstract:
An exhaust treatment component mounting system including an exhaust treatment component canister that includes a cleat ring, and an exhaust treatment component housing including a radially outwardly extending flange. A torsion rod including a first end that mates with the flange of the housing, and a second end including a coupling that mates with the cleat ring, wherein during connection between the first end and the second end of the torsion rod, the canister is rigidly secured to the housing.
Abstract:
A shock absorber has a housing with a piston rod assembly disposed therein. A first rod guide member is secured within a first portion of the housing so as to be concentrically disposed about at least a portion of the piston rod assembly. A second rod guide member is secured within the housing adjacent the first rod guide member so as to be concentrically disposed about at least another portion of the piston rod assembly. A digital valve assembly is disposed within the second rod guide member and fluidly couples chambers within the shock absorber.
Abstract:
A method for monitoring an exhaust after-treatment system that doses an exhaust treatment fluid held from a tank into an exhaust stream. The method includes determining a first temperature of the exhaust treatment fluid in the tank using a temperature sensor. If the first temperature of the exhaust treatment fluid is less than a predetermined temperature, a heater is activated to increase the first temperature of the exhaust treatment fluid. The increasing first temperature is then monitored relative to the predetermined temperature. Then, a second temperature when a phase change of the exhaust treatment fluid occurs is detected. The detected second temperature is then compared to the predetermined temperature to determine whether the exhaust treatment fluid is of sufficient quality, or to determine whether the temperature sensor is rational.
Abstract:
An engine exhaust treatment and fuel efficiency improvement system includes a NOx module that determines a quantity of NOx emitted from an engine. A selective catalytic reduction (SCR) efficiency module determines a SCR efficiency to reduce the determined NOx quantity below a predetermined threshold. A reagent dosing module determines a quantity of reagent required to reduce the NOx quantity below the predetermined threshold. An injection optimization module determines whether an increase in system operating efficiency may be obtained by changing an injected reagent quantity and an engine operating parameter in cooperation with each other while maintaining the NOx quantity below the threshold, the system being operable to change the reagent injection quantity and engine operating parameter to increase system efficiency.
Abstract:
A damper system for a vehicle comprises an electrically adjustable hydraulic shock absorber and a printed circuit board assembly. The printed circuit board assembly includes power drive electronics, and is electrically coupled to the shock absorber. The printed circuit board assembly is disposed with the shock absorber.
Abstract:
An exhaust system including a selective catalytic reduction (SCR) component and an oxidation catalyst component. The exhaust system also includes an exhaust treatment fluid injection system for dispersing an exhaust treatment fluid into an exhaust stream at a location adjacent either the SCR component or the oxidation catalyst component, wherein the exhaust treatment fluid injection device includes a common rail that provides the exhaust treatment fluid under pressure to a plurality of injectors that dose the exhaust treatment fluid into the exhaust stream. The exhaust treatment fluid injection device also includes a return rail for returning unused exhaust treatment fluid to the fluid source. Each of the common rail and return rail can be configured to allow drainage of the exhaust treatment fluid as a freeze-protection feature.
Abstract:
A burner for an exhaust aftertreatment system may include a housing assembly and an ignition device. The housing assembly may include an inner shell surrounded by intermediate and outer shells. The inner shell may at least partially define a combustion chamber. The housing assembly may include an airflow passage having an opening extending through the outer shell. The airflow passage may extend between the outer shell and the intermediate shell as well as between the intermediate shell and the inner shell. The airflow passage may provide fluid communication between the opening and the combustion chamber. The ignition device may be at least partially disposed within the housing assembly and may ignite fuel received from a fuel source and air received from the airflow passage to produce a flame in the combustion chamber. The airflow passage may be in a heat transfer relationship with the flame in the combustion chamber.
Abstract:
A method of determining an optimized position for a burner in an exhaust aftertreatment system includes estimating temperature distributions across faces of exhaust treatment devices positioned within parallel paths based on an initial burner position upstream of the parallel paths. A temperature distribution across the faces of the exhaust treatment device is again estimated based on a changed burner position. A difference between the estimates is determined. The changing, estimating and determining steps are repeated to correlate the burner position with a temperature variance across the faces. An optimized burner position is determined based on minimizing the temperature variance across the faces of the exhaust treatment devices.