Abstract:
A shock absorber has a housing with a piston rod assembly disposed therein. A first rod guide member is secured within a first portion of the housing so as to be concentrically disposed about at least a portion of the piston rod assembly. A second rod guide member is secured within the housing adjacent the first rod guide member so as to be concentrically disposed about at least another portion of the piston rod assembly. A digital valve assembly is disposed within the second rod guide member and fluidly couples chambers within the shock absorber.
Abstract:
A shock absorber has a housing with a piston rod assembly disposed therein. A first rod guide member is secured within a first portion of the housing so as to be concentrically disposed about at least a portion of the piston rod assembly. A second rod guide member is secured within the housing adjacent the first rod guide member so as to be concentrically disposed about at least another portion of the piston rod assembly. A digital valve assembly is disposed within the second rod guide member and fluidly couples chambers within the shock absorber.
Abstract:
A shock absorber is disclosed which has a base valve assembly for controlling a flow of a working fluid between a reservoir chamber and a working chamber of the shock absorber. The base valve makes use of at least one digital valve assembly. The digital valve assembly communicates with an intermediate chamber formed between an intermediate tube and a pressure tube of the shock absorber. The digital valve assembly controls flow of the working fluid between the intermediate chamber and the reservoir chamber, to help control a damping action provided by the shock absorber.
Abstract:
A shock absorber has a housing with a piston rod assembly disposed therein. A first rod guide member is secured within a first portion of the housing so as to be concentrically disposed about at least a portion of the piston rod assembly. A second rod guide member is secured within the housing adjacent the first rod guide member so as to be concentrically disposed about at least another portion of the piston rod assembly. An electronically controlled valve assembly is disposed within the second rod guide member and is in communication with the first rod guide member.
Abstract:
A shock absorber has a compression valve assembly that provides a high damping load during a compression stroke and an extension valve assembly that provides a high damping load during an extension stroke. One or more digital valve assemblies is positioned to work in parallel with the compression valve assembly and the extension valve assembly to provide a lower damping load. The lowering of the damping load is based upon the cross sectional area of flow passages provided by the one or more digital valve assemblies.
Abstract:
A damper includes a piston arranged in sliding engagement inside a pressure tube. The piston divides the pressure tube into a first working chamber and a second working chamber. A hydraulic compression stop assembly is positioned within the second working chamber and includes a plunger arranged in sliding engagement with a sleeve. The plunger includes a bumper cavity having a side wall. The bumper cavity extends a cavity depth from an end face of the plunger. The bumper cavity is in receipt of a compliant bumper. The bumper includes a bumper height greater than the cavity depth such that a portion of the bumper protrudes from the bumper cavity. The protruding bumper portion limits a maximum amount the bumper may be compressed before the sidewall is loaded by one of the piston and a piston rod.
Abstract:
A damper includes a piston arranged in sliding engagement inside a pressure tube. The piston divides the pressure tube into a first working chamber and a second working chamber. A hydraulic compression stop assembly is positioned within the second working chamber and includes a plunger arranged in sliding engagement with a sleeve. The plunger includes a bumper cavity having a side wall. The bumper cavity extends a cavity depth from an end face of the plunger. The bumper cavity is in receipt of a compliant bumper. The bumper includes a bumper height greater than the cavity depth such that a portion of the bumper protrudes from the bumper cavity. The protruding bumper portion limits a maximum amount the bumper may be compressed before the sidewall is loaded by one of the piston and a piston rod.
Abstract:
The present disclosure relates to a shock absorber having a pressure tube which defines a fluid chamber, and a piston assembly. The piston assembly is disposed within the fluid chamber and divides the fluid chamber into upper and lower working chambers. A reserve tube surrounds the pressure tube to define a reservoir chamber between the reserve tube and the pressure tube. The pressure tube is disposed between a rod guide assembly and a lower mount. A structural integrity of the pressure tube is greater than a structural integrity of the reserve tube, and the pressure tube further operates as a principal load bearing component for the shock absorber.
Abstract:
A damper having a pressure tube, a piston, and a hydraulic compression stop assembly. The piston is arranged in sliding engagement inside the pressure tube. The piston divides the pressure tube into a first working chamber and a second working chamber and the piston is coupled to a piston rod that extends through the first working chamber. The hydraulic compression stop assembly is positioned in the second working chamber. The hydraulic compression stop assembly includes a sleeve, a plunger, a biasing member, and a pressure relief valve. The plunger is arranged in sliding engagement with the sleeve and can therefore move between an extended position and a retracted position. The biasing member biases the plunger towards the extended position and the pressure relief valve relieves excessive fluid pressure inside the hydraulic compression stop assembly.
Abstract:
An injector for injecting a reagent into an exhaust stream includes an outer tube extending through an electromagnet and surrounding an inner tube. A first end of the inner tube is sealingly fixed to an inner surface of the outer tube. A guide member and an orifice plate are each sealingly fixed to the inner surface of the outer tube. A second end of the inner tube is aligned by the guide member. A moveable valve member includes a pintle head guided by the inner surface of the outer tube to align the valve member with an orifice extending through the orifice plate.