Abstract:
Disclosed herein is a method and apparatus for reducing exhaust gases in an initial cold start period, in which a main catalyst unit is connected to an engine through an exhaust pipe, including the steps of receiving signals for stopping engine operation from an engine, and removing engine exhaust gases remaining in an exhaust pipe located at an inlet of a main catalyst unit.
Abstract:
A conducting polymer composition containing a siloxane material of Formula (1) below and a conducting polymer, and an electronic device including a layer formed using the conducting polymer composition: where A and a are the same as described in the detailed description of the invention. The electronic device including the layer formed using the conducting polymer composition has excellent electrical characteristics and long lifetime.
Abstract:
A conductive polymer compound includes: a conductive polymer; a first repeating unit represented by the following Chemical Formula 1; a second repeating unit represented by the following Chemical Formula 2; and a third repeating unit represented by the following Chemical Formula 3 and/or Chemical Formula 4,
Abstract:
A donor film has a soft polymer film and a transfer layer to be transferred which is formed on the soft polymer film. When fabricating a patterned organic electroluminescent device using the donor film for thin film transfer, the transfer layer is transferred even with a small amount of energy due to good adhesion between the transfer layer of the donor film and an acceptor film, and multiple layers, such as organic small molecular and polymer layers in addition to a metal layer, may be simultaneously transferred, while eliminating a need of a photothermal conversion layer.
Abstract:
A photo-patternable composition for forming an organic insulating film which includes (i) a functional group-containing monomer, (ii) an initiator generating an acid or a radical upon light irradiation, and (iii) an organic or inorganic polymer. Further disclosed is a method for forming a pattern of an organic insulating film using the composition. Since an organic insulating film can be simply patterned without involving any photoresist process, the overall procedure is simplified and eventually an organic thin film transistor with high charge carrier mobility can be fabricated by all wet processes.
Abstract:
Provided are a compound represented by Formula 1 and an organic light emitting device including the same: X—Ar1—Ar2—Y (1) where Ar1, Ar2, X, and Y are the same as in the detailed description. The organic light emitting device including the compound has low driving voltage, high brightness, high efficiency, and high color purity.
Abstract:
A method of fabricating a thin film transistor, in which source and drain electrodes are formed through a solution process, thus all stages which include formation of electrodes on a substrate, formation of an insulator layer, and formation of an organic semiconductor layer are conducted through the solution process. In the method, the fabrication is simplified and a fabrication cost is reduced. It is possible to apply the organic thin film transistor to integrated circuits requiring high speed switching because of high charge mobility.
Abstract:
Disclosed herein is a method and apparatus for reducing exhaust gases in an initial cold start period, in which a main catalyst unit is connected to an engine through an exhaust pipe, including the steps of receiving signals for stopping engine operation from an engine, and removing engine exhaust gases remaining in an exhaust pipe located at an inlet of a main catalyst unit.
Abstract:
In a method of forming a conductive layer, a conductive layer formed using the method, an organic electroluminescent device including the conductive layer, and a method of manufacturing the organic electroluminescent device, the method of forming the conductive layer comprises: pre-treating a substrate in order to improve adhesive force; coating a mixture solution which contains a sulfonate-based catalyst and a solvent on the substrate, and then drying the coated product; and performing vapor-phase polymerization by contacting the substrate on which the catalyst is coated with monomers which make up a conductive polymer in a vapor phase. The conductive layer obtained using the method of forming a conductive layer has high conductivity, high transmittance with respect to light having a wavelength of 300 nm to 700 nm, uniform thickness, and thermal-chemical stability.
Abstract:
A conducting polymer composition containing a siloxane material of Formula (1) below and a conducting polymer, and an electronic device including a layer formed using the conducting polymer composition: where A and a are the same as described in the detailed description of the invention. The electronic device including the layer formed using the conducting polymer composition has excellent electrical characteristics and long lifetime.