Abstract:
A user equipment (UE) receives a signal comprising multiple resource blocks and configured for receiving a subframe comprising multiple time-frequency resources, the time-frequency resources comprising at least two control channel candidates. The UE determines a first control channel candidate of the at least two control channel candidates in the subframe, determines a first antenna port (AP) associated with the first control channel candidate, decodes the first control channel candidate based on the first AP, determines a second control channel candidate of the at least two control channel candidates in the subframe, determines a second AP associated with the second control channel candidate, and decodes the second control channel candidate based on the second AP, wherein the AP used for decoding the first control channel candidate is distinct from the AP used for decoding the second control channel candidate.
Abstract:
A wireless communication terminal including a transceiver coupled to a processor and corresponding methods are disclosed. The processor is configured to determine resource elements that carry data intended for the terminal from a set of allocated resource elements that carry data intended for the terminal excluding at least resource elements associated with a first set of one or more resource elements of a particular type that are shifted relative to a known reference signal pattern. The processor is also configured to decode the resource elements that carry the data intended for the terminal based on the resource elements that carry the data intended for the terminal.
Abstract:
A wireless terminal receives signaling information, pertaining to a reference signal transmission in at least one specifically designated sub frame, the signaling information including a list, the list including base station identities. The terminal determines, from at least one of the base station identities in the list, the time-frequency resources associated with a reference signal transmission intended for observed time difference of arrival (OTDOA) measurements from a transmitting base station associated with said one base station identity. The time of arrival of a transmission from the transmitting base station, relative to reference timing, is measured. The wireless terminal can receive a command from a serving cell to start performing inter-frequency OTDOA measurement on a frequency layer containing reference signals, the frequency layer distinct from the serving frequency layer, the serving frequency layer not containing positioning reference signals. The wireless terminal can perform OTDOA measurements subsequent to the reception of the command on a carrier frequency different from the serving cell carrier frequency. A base station transmitter can jointly schedule a reference signal transmission from a plurality of base station transmitters for the purpose of OTD estimation enhancement, and transmit identical reference signals from the plurality of base station transmitters, the reference signals being identical both in the signal sequence and time-frequency resources used for transmission.
Abstract:
A method, a wireless terminal device, and a base station are disclosed. A receiving unit 408 may receive from a base station an antenna precoding instruction for an uplink transmission. A processor 304 may execute a modification of the antenna precoding instruction according to a transmit antenna adapter into a customized precoding. A transmitting unit 406 may perform the uplink transmission according to the customized precoding.
Abstract:
A base station communicates a positioning reference signal (PRS) to wireless communication devices over a downlink in a wireless communication system by encoding a PRS into a first set of transmission resources, encoding other information into a second set of transmission resources, multiplexing the two sets of resources into a subframe such that the first set of resources is multiplexed into at least a portion of a first set of orthogonal frequency division multiplexed (OFDM) symbols based on an identifier associated with the base station and the second set of resources is multiplexed into a second set of OFDM symbols. Upon receiving the subframe, a wireless communication device determines which set of transmission resources contains the PRS based on the identifier associated with the base station that transmitted the subframe and processes the set of resources containing the PRS to estimate timing (e.g., time of arrival) information.
Abstract:
Specifically, a method and system that performs MIMO and beamforming at a base station based on an uplink channel sounding (ULCS) from only one of the mobile station antennas and closed-loop multiple input, multiple output (MIMO) schemes based on the singular value decomposition (SVD) of the channel matrix. The ULCS is limited to sounding and the channel uses fewer than an optimal number of transmit antennas (e.g. one for WiMAX). The base station arrays may be configured for a full array transmitting mode or a sub-array transmitting mode.
Abstract:
A method in a wireless communication device includes receiving precoding matrix information including first and second precoding submatrices, transmitting a first transport block from a first set of at least two antennas according to the first precoding submatrix and a second transport block from a second set of at least two antennas according to the second precoding submatrix, receiving a retransmission request for the second transport block, and retransmitting the second transport block according to a retransmission precoding matrix from at least one of the first set of antennas and at least one of the second set of antennas.
Abstract:
A wireless communication system frame structure configurable to serve to half-duplex user terminals or a mixture of half-duplex and full-duplex user terminals based on a grouping of the user terminals according to one or more criteria. In one embodiment, user terminals are switched from one group to another. A user terminal signaling mechanism is also provided.
Abstract:
A communication system is provided wherein a user equipment (UE) receives control information from a wireless network. The UE monitors control channel candidates using common reference signals (CRS) and monitors enhanced control channel candidates using demodulation reference signals (DMRS) when the UE is configured in a first transmission mode, such as transmission mode 9, for receiving a downlink shared traffic channel based on DMRS. The UE monitors control channel candidates only using CRS when the UE is configured in a second transmission mode, such as any of transmission modes 1-6, for receiving a downlink shared traffic channel based on CRS. The UE then receives downlink control information (DCI) in a subframe in one of the monitored control channel candidates or enhanced control channel candidates in the subframe.
Abstract:
A method is described for fast coordinated transmissions in a multi-point system, which involves a UE receiving known pilot signals sent from a set of transmission antennas and determining, based on the known pilot signals from the set of transmission antennas, a recommended first subset of transmission antennas from which transmissions are not intended for the wireless communication device, and a recommended second subset of transmission antennas from which transmissions are intended for the wireless communication device. The UE also determines a recommended transmission power setting of each of the first subset of transmission antennas; sending information to the base station, wherein the information pertains to the recommended first and second subsets of transmission antennas and the recommended transmission power setting of each of the first subset of transmission antennas.