Abstract:
The disclosure describes procedures for including downlink control information (DCI) within a physical downlink shared channel (PDSCH) communication to reduce power consumption for a user equipment (UE) operating in a Long Term Evolution (LTE) network. A network apparatus can be configured to identify an expected DCI change for the UE, determine whether an LTE subframe location for the DCI change is known, generate either a general or a specific DCI change indicator, and send the corresponding DCI change indicator to the UE on the PDSCH. The specific DCI change indicator can include a bitmap identifying a particular upcoming LTE subframe where the UE is required to decode the PDCCH for DCI, and the general DCI change indicator can include a bit flag identifying a time associated with one or more upcoming LTE subframes when the UE should decode the PDCCH for DCI.
Abstract:
A wireless communication system is presented for robust mobility management in a HetNet communication system. A source cell can prepare a macro cell and a target small cell as handover candidates during handover decision making and/or preparation. The mobile device is informed about the prepared macro cell and target small cell using radio resource control (RRC) messaging. After receiving a handover command or detecting radio frequency (RF) loss, the mobile device can try to connect with the target small cell. If the mobile device is unable to connect to the target small cell, the UE can fall back and connect to the macro cell.
Abstract:
A method for determining current local time for a wireless communication device is provided. The method can include a wireless communication device receiving a message sent by a network entity. The message can include location information indicative of a location associated with a time zone in which a serving cell for the wireless communication device is located. The method can further include the wireless communication device extracting the location information from the message; using the location information to determine the time zone; and determining a current local time based on the time zone.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform substantially concurrent communications with a next generation network node and a legacy network node. The wireless device may be configured to stablish a first wireless link with a first cell according to a RAT, where the first cell operates in a first system bandwidth and establish a second wireless link with a second cell according to a RAT, where the second cell operates in a second system bandwidth. Further, the wireless device may be configured to perform uplink activity for both the first RAT and the second RAT by TDM uplink data for the first RAT and uplink data for the second RAT if uplink activity is scheduled according to both the first RAT and the second RAT.
Abstract:
A wireless communication device (UE) may provide information pertaining to one or more operating capabilities of the UE to LTE and 5G-NR networks. The UE may transmit information to an LTE base station directly, and to a 5G-NR base station directly, or indirectly via the LTE base station. The information may include preferred values corresponding to any number of different operating parameters associated with wireless communications or wireless communication capabilities of the UE in both LTE and 5G-NR networks, to inform and/or request the LTE and 5G-NR networks to make provisions based on the transmitted information for the wireless communications of the UE on those networks. The UE may thereby provide assistance information to LTE and 5G-NR networks in a multi-radio-access-technology dual-connectivity setting to request the respective networks to adjust certain operating capabilities of the UE in order to alleviate one or more operating issues that may be affecting the UE.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform substantially concurrent communications with a next generation network node and a legacy network node. The wireless device may be configured to stablish a first wireless link with a first cell according to a RAT, where the first cell operates in a first system bandwidth and establish a second wireless link with a second cell according to a RAT, where the second cell operates in a second system bandwidth. Further, the wireless device may be configured to perform uplink activity for both the first RAT and the second RAT by TDM uplink data for the first RAT and uplink data for the second RAT if uplink activity is scheduled according to both the first RAT and the second RAT.
Abstract:
A user equipment (UE) device may communicate according to a new device category satisfying specified QoS (quality of service) requirements while also satisfying specified link budget requirements, and/or additional optimization requirements. The UE device may communicate with a cellular base station according to a first mode of operation associated with the new device category, and may switch to communicating with the cellular base station according to a second mode of operation associated with a second (pre-existing) device category in response to the link budget requirements exceeding a specified value and the quality of service requirements not being sensitive. The UE device may also switch to communicating with the cellular base station according to a third mode of operation associated with a third (pre-existing) device type in response to the link budget requirement not exceeding the specified value, or the QoS requirements being sensitive and a downlink throughput requirement exceeding a specified throughput value.
Abstract:
A network device or component such as an access node (AN) can operate to provide a request to obtain a network slice of a network slice as a service (NSaaS) to provide a communication service on the network slice for an end-user device. In response to obtaining the network slice, a network slice customer (NSC) Service identity (ID) associated with the network slice can be determined and provided for a communication service for an application by the end-user device or user equipment (UE). The request can be processed at a network slice provider (NSP) component, in which the network slice can be assigned to the NSC in response to the request by the NSC. The NSP further provides a user equipment (UE) route selection policy (URSP) comprising a traffic descriptor that includes the NSC Service ID to the NSC.
Abstract:
This disclosure relates to performing cellular communication in unlicensed spectrum using a flexible slot structure. A cellular base station may perform a listen-before-talk procedure, and may transmit a reservation frame when the listen-before-talk procedure is successful. The reservation frame may reserve a wireless medium for a transmit opportunity. Transmission slots may be scheduled for communication with one or more wireless devices during the transmit opportunity. The transmission slots may be selected from multiple possible uplink transmission slot types and multiple possible downlink transmission slot types. Indications of the scheduled transmission slots, including indications of slot types of the scheduled transmission slots, may be provided to the wireless devices. Wireless communication may be performed between the cellular base station and the wireless devices according to the scheduled transmission slots.
Abstract:
A wireless communication device (UE) may provide information pertaining to one or more operating capabilities of the UE to LTE and 5G-NR networks. The UE may transmit information to an LTE base station directly, and to a 5G-NR base station directly, or indirectly via the LTE base station. The information may include preferred values corresponding to any number of different operating parameters associated with wireless communications or wireless communication capabilities of the UE in both LTE and 5G-NR networks, to inform and/or request the LTE and 5G-NR networks to make provisions based on the transmitted information for the wireless communications of the UE on those networks. The UE may thereby provide assistance information to LTE and 5G-NR networks in a multi-radio-access-technology dual-connectivity setting to request the respective networks to adjust certain operating capabilities of the UE in order to alleviate one or more operating issues that may be affecting the UE.