Abstract:
Blood samples can be collected without substantial contamination from ambient air, such that the blood sample may be analyzed accurately for gaseous components such as oxygen and carbon dioxide. An embodiment of the device has integrated actuation, lancing, and sample acquisition components, which in some embodiments are miniatuized and/or disposable.
Abstract:
These and other objects of the present invention are achieved in a body fluid sampling system for use on a tissue site that includes an electrically powered drive force generator. A penetrating member is operatively coupled to the force generator. The force generator moves the member along a path out of a housing having a penetrating member exit, into the tissue site, stops in the tissue site, and withdraws out of the tissue site. An analyte detecting member is positioned to receive fluid from a wound created by the penetrating member. The detection member is configured to determine a concentration of an analyte in the fluid using a sample of less than 1 μL of the fluid.
Abstract:
A tissue penetrating system has a housing member. A plurality of penetrating members are positioned in the housing member. A tissue stabilizing member is coupled to the housing. A penetrating member sensor is coupled to the plurality of penetrating members. The penetrating member sensor is configured to provide information relative to a depth of penetration of a penetrating member through a skin surface.
Abstract:
A lancet driver is provided wherein the driver exerts a driving force on a lancet during a lancing cycle and is used on a tissue site. The driver comprises of a drive force generator for advancing the lancet and a processor coupled to the drive force generator capable of changing the direction and magnitude of force exerted on the lancet during the lancing cycle. The driver further includes a human interface on the housing providing at least one output for communicating with the patient.
Abstract:
A disposable biosensor test strip is provided that includes a plurality of penetrating members. Each penetrating member is associated with a capillary chamber that has a depth suitable for capillary flow of blood and holds a volume of less than about 1.0 μl of the blood sample. A working electrode and a counter or reference electrode are disposed within the capillary chamber. A reagent is proximal to or in contact with at least the working electrode. The reagent includes an enzyme and a mediator. The reagent reacts with glucose to produce an electroactive reaction product. A blood sample, containing glucose, is applied into the capillary chamber. The capillary chamber directs capillary flow of the blood sample into contact with the reagent to cause the blood sample to at least partially solubilize or hydrate the reagent. The blood sample is detected in the capillary chamber. The electroactive reaction product is electro-oxidized or electro-reduced at the working electrode. Within 10 seconds after detecting, a determination is made of glucose concentration and a readout of the measurement is provided. The glucose determination is made by correlating the electro-oxidized or electro-reduced electroactive reaction product to the concentration of glucose in the blood sample.
Abstract:
A skin penetrating system includes a housing member and a penetrating member positioned in the housing member. An analyte detecting member is coupled to a sample chamber. The analyte detecting member is configured to determine a concentration of an analyte in a body fluid using a sample of less than 1 μL of a body fluid disposed in the sample chamber. A tip of the penetrating member is configured to extend through an opening of the sample chamber.
Abstract:
These and other objects of the present invention are achieved in a body fluid sampling system for use on a tissue site that includes an electrically powered drive force generator. A penetrating member is operatively coupled to the force generator. The force generator moves the member along a path out of a housing having a penetrating member exit, into the tissue site, stops in the tissue site, and withdraws out of the tissue site. An analyte detecting member is positioned to receive fluid from a wound created by the penetrating member. The detection member is configured to determine a concentration of an analyte in the fluid using a sample of less than 1 mL of the fluid.
Abstract:
A skin penetrating system is provided with a drive force generator and a disposable housing member. A plurality of penetrating members are positioned in the disposable housing member. Each penetrating member is coupled to the drive force generator. A plurality of analyte detecting members are each associated with a penetrating member and are positioned in the disposable housing member. Each analyte detecting member is positioned in a sample chamber with a volume of less than 1 μL, The sample chambers have openings for transport of a body fluid into the sample chamber. Each analyte detecting member is configured to determine a concentration of an analyte in a body fluid using a sample of less than 1 μL of a body fluid disposed in the sample chamber. A user interface is configured to relay at least one of, skin penetrating performance or a skin penetrating setting.
Abstract:
A tissue penetrating system has a housing member, a plurality of penetrating members positioned in the housing member and a plurality of sample chambers. Each sample chamber is associated with a penetrating member. A tissue stabilizing member has a tissue interface surface configured to be applied to a tissue surface and provide for spontaneous flow of blood for sample capture. The tissue stabilizing member is coupled to the housing.
Abstract:
A device for use with a penetrating member driver to penetrate tissue is provided. A plurality of penetrating members are coupled to a single cartridge and are operatively couplable to the penetrating member driver. The penetrating members are movable to extend radially outward from the cartridge to penetrate tissue. A plurality of analyte sensors are coupled to the single cartridge and are positioned on the cartridge to receive body fluid from a wound in the tissue created by the penetrating member.