Compact optical virus detection analyzer of nano- and micro-size bio particles using light scattering and fluorescence

    公开(公告)号:US12066368B2

    公开(公告)日:2024-08-20

    申请号:US17503086

    申请日:2021-10-15

    摘要: A Compact Optical Virus Detection Analyzer (COVDA) uses light scattering and fluorescence to detect nanometer (nm) and micrometer (um) sized particles, such as biological particles and can be used to detect viruses such as coronavirus including SAR-CoV-2 responsible for COVID-19, pollen and bacteria. It can be used for prescreening, rapid detection of suspicious people. COVDA involves experimental and theoretical methods for particle and virus detection using Tryptophan as a key biomarker. Light sources in compact units include lamps such as Xenon (Xe) lamp with narrow band filters, LEDs (such as AlN) or laser diode, Q switched and mode lock Lasers for nanosecond and picosecond pulses (such as Nd Yag/Glass, Ti sapphire with Harmonic generator) in blue from 400 nm to 500 nm to generate second harmonic generation (SHG) in KDP/BBO crystals to produce 200 nm to 250 nm emission, or green laser pointers at about 530 nm to get emitters with harmonic crystals at about 270 nm or LEDS from 230 nm to 300 nm for pumping the samples at 230 nm to 289 nm to pump tryptophan and light scatter of nanometer particles of virus. The ultra high power ns and ps lasers in mJ to J can level can be used to locate Bio virus bacteria clouds in free space to image and destroy and kill virus.

    Blood clotting time measurement cartridge and blood clotting time measuring device

    公开(公告)号:US12031974B2

    公开(公告)日:2024-07-09

    申请号:US17260487

    申请日:2020-09-01

    申请人: APEL CO., LTD.

    IPC分类号: G01N33/49 B01L3/00

    摘要: A blood clotting time measurement cartridge that can keep an amount of blood constant while simplifying a configuration and easing a blood injection operation, and a blood clotting time measuring device using the cartridge. The cartridge includes a measurement flow channel wherein blood is housed and transmission of light detects whether there is blood in a predetermined position, an introduction opening on one end side of the channel from which blood is introduced, a communication opening on the other end through which it is possible to cause, by suction or pressurization of air or blood introduced from the introduction opening, the blood in the channel to make a reciprocating motion so as to pass through the predetermined position, a partition wall that partitions a blood injection space connected to the introduction opening, and an absorption member on an outer side of the partition wall that absorbs blood beyond the wall.