Abstract:
Provided is an organic light emitting element having high light emitting efficiency. The organic light emitting element includes: an anode; a cathode; an emission layer placed between the anode and the cathode; and a hole transport layer formed between the anode and the emission layer, in which the hole transport layer contains a siloxane compound and a compound having a tertiary arylamine structure; and number of SP2 carbon atoms in the hole transport layer is ten times or less number of silicon atoms in the hole transport layer.
Abstract:
Provided is an organic light-emitting device capable of outputting light with high efficiency and high luminance. The organic light-emitting device includes an anode, a cathode, an emission layer placed between the anode and the cathode, and an organic compound layer placed between the anode and the emission layer, in which the organic compound layer contains the following compound A and compound B: [Compound A] an organic compound free of a nitrogen atom and a metal atom, the compound having SP2 carbon atoms and SP3 carbon atoms, and having a ratio of the number of the SP3 carbon atoms to the number of the SP2 carbon atoms of 40% or more; and [Compound B] a compound having a tertiary amine structure.
Abstract:
Provided is a long-lifetime organic light-emitting element having a good device lifetime characteristic. The organic light-emitting device includes: a pair of electrodes; and an organic compound layer placed between the pair of electrodes, in which the organic compound layer includes an iridium complex having a specific structure and a different kind of metal complex.
Abstract:
Provided is an organic light-emitting element having high light-emitting efficiency and a long element lifetime. Specifically, provided is an organic light-emitting element, including: an anode; a cathode; and an organic compound layer placed between the anode and the cathode, in which: the organic compound layer includes an emission layer; the emission layer includes at least a host and a guest; the guest is an iridium complex of a specific structure; the host is a heterocycle-containing compound; and a content of the host is 50 wt % or more with reference to a total amount of constituent materials for the emission layer.
Abstract:
Provided is an organic light-emitting element having high luminous efficiency and a long lifetime. The organic light-emitting element includes a pair of electrodes and an organic compound layer placed between the pair of electrodes, in which the organic compound layer includes an iridium complex having a benzo[f]isoquinoline of a specific structure as a ligand and a metal complex compound of a specific structure.
Abstract:
Provided is a novel compound having a high lowest triplet excited level (T1 level), a narrow bandgap, and a shallow highest occupied molecular orbital (HOMO) level. A dibenzoxanthene compound is represented by formula [1] described in Claim 1. In formula [1], R1 to R7 are each independently selected from the group consisting of hydrogen, alkyl groups, aryl groups, heterocyclic groups, aryloxy groups, alkoxy groups, amino groups, silyl groups, and cyano groups.
Abstract:
Provided is an organic light-emitting device having high efficiency and capable of being driven at a low voltage. An organic light-emitting device includes an anode, a cathode, and an organic compound layer including at least an emission layer between the anode and the cathode. The organic light-emitting device includes, between the anode and the emission layer, a first layer including a first organic semiconductor material and a transition metal oxide, and a second layer in contact with the first layer at an interface on a side closer to the anode and including a second organic semiconductor material. The refractive index of the first organic semiconductor material is less than 1.6. The ionization potential of the first organic semiconductor material is equal to or larger than the ionization potential of the second organic semiconductor material.
Abstract:
An image capturing and display apparatus comprises a plurality of photoelectric conversion elements for converting incident light from the outside of the image capturing and display apparatus to electrical charge signals, and a plurality of light-emitting elements for emitting light of an intensity corresponding to the electrical charge signals acquired by the plurality of photoelectric conversion elements. A pixel region is defined as a region in which the plurality of photoelectric conversion elements are arranged in an array. Signal paths for transmitting signals from the plurality of photoelectric conversion elements to the plurality of light-emitting elements lie within the pixel region.
Abstract:
An organic compound represented by formula [1] or [2]: where X1 to X18 and X21 to X38 are each independently selected from a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an amino group, an aryl group, a heterocyclic group, an aryloxy group, a heteroaryloxy group, a silyl group, and a cyano group, in which at least one of X1 to X8 and at least one of X21 to X28 are substituted or unsubstituted amino groups; and each Y is oxygen, sulfur, selenium, tellurium, or a CR1CR2 group and may be the same or different, in which R1 and R2 are each independently selected from a hydrogen atom, an alkyl group, an alkoxy group, an amino group, an aryl group, a heterocyclic group, an aryloxy group, a heteroaryloxy group, a silyl group, or a cyano group.
Abstract:
A composition contains an organic compound and an anthracene compound different from the organic compound, the anthracene compound having a hydrogen atom at at least one of positions 9 and 10, in which the concentration of the anthracene compound is 100 ppm or less. Additionally, a long-lived organic light-emitting device includes an organic compound layer containing a reduced concentration of the anthracene compound.