Abstract:
In some embodiments, a data packet may be received at a leaf switch. A port-channel associated with a destination port for the data packet may be identified, and the data packet may be transmitted to the destination port via the identified port-channel.
Abstract:
Systems and methods are provided for a multicast based solution to solving the slow-start problem that ensures both optimal (1-hop) and in-sequence delivery of packets to the destination. Packets are hardware switched thereby completely eliminating the slow software switching path.
Abstract:
A system and a method for providing conversational learning is implemented in a network environment. An exemplary method includes receiving a subnet route advertisement that includes an attribute that triggers glean behavior for routing decisions; and installing a subnet entry in a Forwarding Information Base/Adjacency (FIB/ADJ) table. The subnet entry includes a subnet associated with the subnet route advertisement and a corresponding glean adjacency. The corresponding glean adjacency is configured to trigger installation of a host entry associated with a host in an active conversation in a network.
Abstract:
At a physical device in a network configured to host a virtual switch and one or more virtual machines, a packet is received at the virtual switch from a source virtual machine that is directly attached to that virtual switch. A destination Media Access Control (MAC) address is identified from the packet indicating a destination virtual machine for the packet. In response to determining that the destination MAC address of the packet is not present in a database of MAC addresses accessible by the virtual switch, the destination MAC address of the packet is replaced with a shared MAC address associated with a plurality of physical switches in the network.
Abstract:
Systems, methods, and computer-readable media for OAM in overlay networks. In response to receiving a packet associated with an OAM operation from a device in an overlay network, the system generates an OAM packet. The system can be coupled with the overlay network and can include a tunnel endpoint interface associated with an underlay address and a virtual interface associated with an overlay address. The overlay address can be an anycast address assigned to the system and another device in the overlay network. Next, the system determines that a destination address associated with the packet is not reachable through the virtual interface, the destination address corresponding to a destination node in the overlay network. The system also determines that the destination address is reachable through the tunnel endpoint interface. The system then provides the underlay address associated with the tunnel endpoint interface as a source address in the OAM packet.
Abstract:
A leaf switch of a switch fabric includes multiple ports to connect with respective ones of multiple servers. Virtual local area networks (VLANs) are configured on the leaf switch. Dynamic creation of virtual ports is enabled on the leaf switch for at least one of the VLANs on an as needed basis. The leaf switch receives from a particular server connected to a corresponding one of the ports a notification message that a virtual machine is hosted on the particular server. Responsive to the notification message, the leaf switch dynamically creates a virtual port that associates the corresponding one of the ports with the at least one of the VLANs.
Abstract:
In accordance with one example embodiment, there is provided a system configured for virtual local area network (VLAN) blocking on a virtual port channel (vPC) member link to handle discrepant virtual network instance (VNI) to VLAN mappings. In other embodiments, the system can be configured for providing Virtual Switch Interface Discovery Protocol (VDP) and virtual switch enhancements to accommodate discrepant VNI to VLAN mappings. In another example embodiment, an apparatus is provided that includes a processor, and a memory coupled to the processor, where the apparatus is configured such that if a server is connected through a virtual port channel, a VDP is used to notify the server of different VNI to VLAN mappings. In another embodiment, the apparatus can extend a VDP Filter Info Field to carry a set of VLANs mapped to a VNI, keyed by leaf MAC addresses that serve as bridge identifiers.
Abstract:
An example method for touchless multi-domain VLAN based orchestration in a network environment is provided and includes receiving mobility domain information for a virtual machine associated with a processor executing the method in a network environment, the mobility domain information comprising a mobility domain identifier (ID) indicating a scope within which the virtual machine can be moved between servers, generating a virtual station interface (VSI) discovery protocol (VDP) message in a type-length-value (TLV) format with the mobility domain information, and transmitting the VDP message to a leaf switch directly attached to the server, wherein the leaf switch provisions a port according to the mobility domain information.
Abstract:
At a physical device in a network configured to host a virtual switch and one or more virtual machines, a packet is received at the virtual switch from a source virtual machine that is directly attached to that virtual switch. A destination Media Access Control (MAC) address is identified from the packet indicating a destination virtual machine for the packet. In response to determining that the destination MAC address of the packet is not present in a database of MAC addresses accessible by the virtual switch, the destination MAC address of the packet is replaced with a shared MAC address associated with a plurality of physical switches in the network.
Abstract:
A method is provided in one example embodiment and includes establishing a virtual trunk link between a first network element and a second network element. The first and second network elements are located at a first site and the first site and a second site comprise at least a portion of an overlay network. The method further includes receiving data traffic at the first network element, which data traffic is associated with a segment of the overlay network, and mapping a first network identifier allocated to the overlay network segment at the first network element to a virtual trunk link and a VLAN ID. The method additionally includes forwarding the data traffic from the first network element to the second network element via the virtual trunk link with the VLAN ID.