摘要:
A technique for operating a network node in a heterogeneously deployed network comprising network nodes of different nominal transmit powers and at least partially overlapping coverage areas is described. A method implementation of this technique comprises a step of operating the network node in a base mode in which the network node is configured to transmit terminal-specific demodulation reference signals for a first set of terminal devices. The method comprises the further step of selectively activating or deactivating operation of the network node in a Single Frequency Network (SFN) mode in which the network node is configured to transmit, for a second set of terminal devices, the same cell-specific reference nodes as another network node of the heterogeneously deployed network that has a larger nominal transmit power.
摘要:
Methods and devices for introducing enhanced signals into a wireless environment. The enhanced signals provide for functionality that is not specified in a communication standard corresponding to a standard of a legacy terminal. The enhanced signals can be utilized by a non-legacy terminal. The legacy terminal is incapable of processing the enhanced signals and is unable to detect the presence of the enhanced signals.
摘要:
The invention discloses a method for a cellular communications system, in which traffic is sent in frames, each frame comprising a first number of subframes, with a second number of said subframes being available for at least either uplink or downlink traffic. At least one of said second number of subframes is made to comprise at least three parts, as follows: One part which is utilized for uplink traffic, One part which is utilized for downlink traffic, One part which is utilized as a guard period, with said guard period part being scheduled between the uplink and the downlink parts. The duration of at least two of said three parts may be varied to fit the current system need.
摘要:
Determining transmitter antenna weights at a base station having more available transmit antennas than the available number of reference signals can be performed by transmitting reference signals and receiving channel feedback data derived by a mobile terminal from the reference signals. The reference signals are each assigned to one of two or more antenna groupings, wherein at least a first one of the antenna groupings includes two or more transmit antennas, and transmitted using at least one transmit antenna from the corresponding antenna grouping. A first beam-forming vector for the first one of the antenna grouping is determined, and mapping the one or more data streams to the transmit antennas according to a final precoding matrix that depends on the channel feedback data and the first beam-forming vector is performed, to obtain a weighted transmit signal for each of the antennas.
摘要:
The present disclosure relates to signalling of reference signals for Multi Input Multi Output (MIMO) transmission schemes. A method embodiment for generating reference signals for use between a mobile terminal 10 and an access node 20 in a cellular communication network 100 comprises receiving, by the mobile terminal 10, a cyclic shift set indicator; selecting, from a group of cyclic shift sets, a cyclic shift set based on the received cyclic shift set indicator, each cyclic shift set comprising at least two parameters each indicating a cyclic shift; and generating, based on at least two parameters of the selected cyclic shift set, at least two orthogonal reference signals for at least two layers of a Single User Spatial Multiplexing transmission scheme to be simultaneously transmitted. A further method embodiment comprises selecting, from a plurality of groups of cyclic shift sets, a group of cyclic shift sets based on at least one of a transmission rank, being the number of layers to be simultaneously transmitted, and a number of configured antennas of the mobile terminal 10.
摘要:
An antenna arrangement (200, 300, 400) with antenna units (220, 230) comprising an input port (201, 202), a power divider (202, 204) for dividing an input signal into a major and a minor part with a ratio 11, a network (211, 216) with a sum input port, a difference input port, and first and second output ports, first (215, 217) and second antenna (214, 218) elements of a first and a second polarization. Signals to the sum input port are output with a first relation between them and signals to the difference input port are output with a second phase relation. The antenna units are arranged so that the major part of an input signal is connected to the sum port of a network and the minor part of an input signal is connected to the difference port of another network, and the first and second output ports of a network are connected to first and second adjacent antenna elements of the same polarization.
摘要:
In a heterogeneous cell deployment a mobile terminal may need to receive control data transmissions from a macro node at the same time as a pico node is transmitting user data for the mobile terminal, using the same frequency or set of frequencies. This can result in a problematic interference situation. According to several embodiments of the present invention, at least one of two general approaches is used to mitigate the interference situation described above. In a first approach, the pico node's transmission power is reduced in some time intervals, thereby reducing the interference to a level where reception from the macro node is possible. In a second approach, which may be combined with the first approach in some cases, the data transmitted from the macro node is provided by the pico node, either alone or in combination with the macro node.
摘要:
According to the present invention, a receiving node of a telecommunications network (20) (e.g. a radio base station (22) in uplink, or a mobile terminal (24) in downlink) transmits a single acknowledgement message to a transmitting node (e.g. a mobile terminal (24) in uplink, or a radio base station (22) in downlink) in respect of signals received over a plurality of frequency-aggregated carriers (component carriers) (10) between the transmitting and receiving nodes. If all signals are decoded correctly in the receiving node, a positive acknowledgement message (ACK) is sent to the transmitting node; if not all signals are decoded correctly, a negative acknowledgement message (NACK) is sent, or no acknowledgement message is sent. In this way, a single acknowledgement message can be sent for signals received over multiple carriers. The acknowledgement message can have the same format as legacy standards (for example, as specified in Release 8 of the 3GPP specifications), providing compatibility with existing equipment. The number of messages is also reduced compared with the straightforward approach of transmitting individual acknowledgement messages per component carrier.
摘要:
Methods of transmitting and receiving information in a telecommunications network are described. A method of transmitting, for example, includes identifying a message for transmission, the message selected from a plurality of predetermined messages, and selecting a code combination from a set of codes combinations, each code combination corresponding to a predetermined message. Data is encoded with the selected code combination, and the encoded data is transmitted. A method of receiving may include receiving the signal including data encoded for transmission with the selected code combination, and decoding the signal to retrieve unencoded data, the decoding including determining with which code combination selected from the set of code combinations the data is encoded. The data is decoded, and the message for transmission is selected from the plurality of predetermined messages, wherein the message is selected based on the code combination with which the data was encoded.
摘要:
Methods and apparatus for generating, transmitting, and processing error control information in a wireless communication system are disclosed. The error control information is designed so that the probability of a NACK-to-ACK error in transmission is lower than the probability for an ACK-to-NACK error. Multiple ACK/NACK bits are transmitted along with one or more side information bits that indicate the relative quantities of ACK values and NACK values among the ACK/NACK bits. In an exemplary method for generating error control information in a communication device, a plurality of ACK/NACK bits indicating whether corresponding transport blocks were successfully received are generated. One or more side information bits are formed as a function of the ACK/NACK bits, the side information bits indicating the relative quantities of ACK values and NACK values among the ACK/NACK bits, and transmitted along with the ACK/NACK bits to the remote communication node.