摘要:
A longitudinal bias magnetic field control layer applies a counter bias magnetic field to a soft magnetic layer that is antiparallel (in opposite direction) to a longitudinal bias magnetic field. A magnitude of the counter bias magnetic field applied to the soft magnetic layer by the longitudinal bias magnetic field control layer is set smaller than that of the longitudinal bias magnetic field at a track center portion of the soft magnetic layer applied by a pair of bias magnetic field applying layers. A substantial longitudinal bias magnetic field is substantially applied to the soft magnetic layer in the same direction as that of the longitudinal bias magnetic field, and a magnitude of the substantial longitudinal bias magnetic field is maximum at both end portions of the soft magnetic layer and is weakened at the center portion of the soft magnetic layer.
摘要:
In a structure in which an anti-ferromagnetic layer, a first ferromagnetic layer, a non-magnetic layer and a free layer are sequentially adjacent to each other, the first ferromagnetic layer is set so that a saturation magnetostriction is not greater than (+3)×10−5 and an exchange coupling magnetic field Hex between itself and the anti-ferromagnetic layer is not less than 48 (kA/m).
摘要:
An MR element incorporates: a nonmagnetic conductive layer having two surfaces facing toward opposite directions; a free layer disposed adjacent to one of the surfaces of the nonmagnetic conductive layer, wherein the direction of magnetization in the free layer changes in response to an external magnetic field; and a pinned layer disposed adjacent to the other of the surfaces of the nonmagnetic conductive layer, wherein the direction of magnetization in the pinned layer is fixed to the direction orthogonal to the air bearing surface. The MR element does not include any layer provided for fixing the direction of magnetization in the pinned layer. The pinned layer incorporates a ferromagnetic layer made of a ferromagnetic material having a positive magnetostriction constant. A bottom shield gap film and a top shield gap film disposed adjacent to the MR element each have a compressive stress of 600 MPa or greater.
摘要:
A tunnel magnetoresistive effective element has a ferromagnetic tunnel effective film with a free layer, a pinned layer and a tunnel barrier layer sandwiched between the free layer and the pinned layer, a magnetic bias means, a first conductive layer, and a second conductive layer. The magnetic bias means apply a bias magnetic field to the free layer of the ferromagnetic tunnel effective film. The first conductive layer and the second conductive layer generate magnetic fields having the same direction as that of the bias magnetic field through a sense current therein to reinforce the bias magnetic field.
摘要:
A pair of domain control layers are disposed on both sides of the track width direction of the MR film so as to be separated from each other such that the MR film is held therebetween, and apply a longitudinal magnetic field to the MR film (free layer). The MR film is flanked by the domain control layers, each including a layer structure constituted by a base layer, a ferromagnetic layer, and a hard magnetic layer. The base layer causes the hard magnetic layer to have a magnetization direction aligning with an in-plane direction, so as to enhance the coercive force of the hard magnetic layer.
摘要:
An object of the invention is to provide a magnetic transducer and a thin film magnetic head using the same, which can be manufactured by a simple manufacturing process and can obtain good output. The thin film magnetic head has a stack including a plurality of magnetic layers stacked alternately with a plurality of nonmagnetic layers. A layer having the fixed orientation of magnetization is formed on at least one side of the stack in the direction of stacking. The layer has a stacked structure comprising an antiferromagnetic layer and an exchange coupling layer exchange coupling with the antiferromagnetic layer. The magnetic layers of the stack are changed into a single magnetic domain by a magnetic field generated by exchange coupling between the antiferromagnetic layer and the exchange coupling layer so as to prevent Barkhausen noise. Since the layer is formed on at least one side of the stack in the direction of stacking, a manufacturing process is simplified.
摘要:
In a tunnel magnetoresistance effect element comprising a tunnel multilayered film having a tunnel barrier layer, a ferromagnetic free layer and a ferromagnetic pinned layer such that the tunnel barrier layer is held between the ferromagnetic free layer and the ferromagnetic pinned layer, three indexes representing a surface roughness state of the tunnel barrier layer are set such that Ra≦1 nm, Rmax≦10 nm and Rrms≦1.2 nm, wherein Ra is one of the three indexes and representing the center line average roughness, Rmax is one of the three indexes and representing the maximum height, and Rrms is one of the three indexes and representing the standard deviation roughness. Thus, the tunnel magnetoresistance effect element exhibits improved characteristics, particularly, a large head output.
摘要:
In a tunnel magnetoresistance effect element comprising a tunnel multilayered film on an under layer, the tunnel multilayered film has a tunnel barrier layer, a ferromagnetic free layer and a ferromagnetic pinned layer such that the tunnel barrier layer is held between the ferromagnetic free layer and the ferromagnetic pinned layer, wherein three indexes representing a surface roughness state of a surface, which faces the tunnel multilayered film, of the under layer are set such that Ra ≦0.5 nm, Rmax ≦5 nm and Rrms ≦0.55 nm, wherein Ra is one of the three indexes and represents the center line average roughness, Rmax is one of the three indexes and represents the maximum height, and Rrms is one of the three indexes and represents the standard deviation roughness. Thus, the tunnel magnetoresistance effect element exhibits improved characteristics, particularly, a large head output.
摘要:
A method for measuring bias magnetic field for controlling magnetic domain (longitudinal bias magnetic field) of a MR element has the step of applying an external measurement magnetic field onto the MR element which is biased with the magnetic field for controlling the magnetic domain (longitudinal bias magnetic field) in parallel to the direction of the bias magnetic field, the step of measuring &rgr;-H loop of the MR element (output resistance of MR element versus magnetic field strength loop) under the application of the external measurement magnetic field, and the step of determining a shifted amount of the measured &rgr;-H loop.
摘要:
In exemplary embodiments, first and second parameters are obtained for each of different temperatures of the magnetic recording layer. The absolute value of the first parameter for each magnetic grain has a minimum value when the temperature of each magnetic grain reaches a predetermined temperature that increases as the Curie temperature increases, and decreases as the Curie temperature decreases. The second parameter is related to the standard deviation of the coercivity distribution of the magnetic grains divided by the coercivity of the magnetic recording layer. The method calculates a value where the absolute measurement value of the first parameter has a minimum value and the temperature of the magnetic recording layer at which the standard deviation of the coercivity distribution of the magnetic grains divided by the coercivity of the magnetic recording layer has a maximum value.