Abstract:
A phase detection system for use with a synchronous mirror delay or a delay-locked loop in order to reduce the number of delay stages required, and therefore increase the efficiency, is disclosed. The invention includes taking a clock input signal and a clock delay or feedback signal, each having timing characteristics, and differentiating between four conditions based upon the timing characteristics of the signals. The phase detector and associated circuitry then determines, based upon the timing characteristics of the signals, which of a number of phase conditions the signals are in. Selectors select the signals to be introduced into the synchronous mirror delay or delay-locked loop by the timing characteristics of the phase conditions. The system is able to utilize the falling clock edge of the clock input signal, and the lock time is decreased under specific phase conditions. The invention increases the efficiency of the circuits by reducing the effective delay stages in the SMD or DLL while maintaining the operating range.
Abstract:
The present invention provides a method and an apparatus for reducing noise. The apparatus includes a phase detector adapted to determine a phase difference between a first and a second signal, a first circuit adapted to generate a control signal based upon the determined phase difference, and a second circuit. The second circuit is adapted to receive a third signal, receive a fourth signal, modify the fourth signal based upon the control signal, and provide the third signal and the modified fourth signal to the phase detector as the first and second signals.
Abstract:
A delay-lock loop receives an input clock signal from the output of a programmable divider that receives a reference clock signal. The delay-lock loop includes a voltage-controlled delay line generating a plurality of delayed clock signals having different phases. A plurality of the delayed clock signals are combined to generate a plurality of output signals. During an initialization period, an initialization circuit sets the delay of the delay line to a minimum delay value and then compares this delay value to the period of the input clock signal. Based on this comparison, the initialization circuit programs the programmable divider and adjusts the number of delayed clock signals combined to generate the output signals. More specifically, as the frequency of the reference clock signal increases, the divider is programmed to divide by a greater number, and a larger number of delay clock signals are combined to generate the output signals.
Abstract:
A method for reducing the friability of soft substrates by applying an effective amount of a water soluble, polymeric dispersion to at least a portion of a treatment surface of the substrate, such that less than about 90% of the exterior surface has the dispersion applied thereto.
Abstract:
Apparatus, systems, and methods are disclosed that operate to adjust power received by a clock distribution network at least partially based on operating conditions of an integrated circuit. Additional apparatus, systems, and methods are disclosed.
Abstract:
The present invention provides a method and an apparatus for reducing noise. The apparatus includes a phase detector adapted to determine a phase difference between a first and a second signal, a first circuit adapted to generate a control signal based upon the determined phase difference, and a second circuit. The second circuit is adapted to receive a third signal, receive a fourth signal, modify the fourth signal based upon the control signal, and provide the third signal and the modified fourth signal to the phase detector as the first and second signals.
Abstract:
A bias generator for initializing a voltage controlled delay line by providing the voltage controlled delay line with a control signal having an initial voltage and monitoring the variable delay line for an output clock signal. The voltage of the control signal is varied from the initial voltage until an output clock signal from the voltage controlled delay line is detected by the bias generator.
Abstract:
Methods, circuits, devices, and systems are provided for phase locked loop (PLL) locking. A method of locking a PLL includes locking a delay locked loop (DLL) path while applying a control voltage of the DLL path to a loop filter of the DLL path. The method includes locking a DLL voltage while applying the control voltage of the DLL path to the loop filter of the DLL path. The method also includes transferring the control voltage from the loop filter of the DLL path to a loop filter of the PLL path after the DLL voltage locks.
Abstract:
A plurality of improved memory systems employing a phase detection system in conjunction with either a synchronous mirror delay or a delay-locked loop, and related methods of operation, are disclosed. The memory systems determine timing characteristics among multiple signals and, based upon those timing characteristics, vary which clock-related signal is output. The improvement relates in part to the incorporation of a clock divider that reduces the frequency of the clock signals utilized by the system. Due to the incorporation of the clock divider and an edge recovery device, attenuation, power dissipation and duty cycle distortion associated with propagation of the clock signal(s) are reduced. Further, the reduction in frequency of the clock signals allows for numerous differently-phased clock signals to be generated within the system, which allows for finer timing comparisons to be performed, thus allowing for finer selections to be made in relation to which clock-related signal is output.
Abstract:
Delay-locked loops, signal locking methods and devices and systems incorporating delay-locked loops are described. A delay-locked loop includes a forward delay path, a feedback delay path, a phase detector and a timer circuit. The forward delay path alternatively couples to an external clock signal and to an internal test signal. The phase detector adjusts a delay line based upon the phase differences of a feedback signal and the external clock signal. The timer circuit switches the internal test signal into the forward delay path and measures the time of traversal of the internal test signal around the forward delay path and the feedback delay path and generates a time constant for configuring the phase detector's update period. The phase detector is thereafter able to stabilize at an improved rate.