Abstract:
Methods of manufacturing rotor blade components for a wind turbine using pre-cured, prefabricated plates constructed of multiple fiber materials are disclosed. In one aspect of the present disclosure, the method includes providing a plurality of pultruded members. Each of the pultruded members includes, at least, first and second fiber materials, wherein the first and second fiber materials include at least one of different sizes or different types of fiber materials. Another step includes arranging the plurality of pultruded members into one or more layers. A further step includes joining the layers of pultruded members together to form the rotor blade component.
Abstract:
A rotor blade assembly for a wind turbine may include a first blade segment having a first joint end and a second blade segment having a second joint end, with the blade segments being coupled together such that the first and second joint ends are located at or adjacent to a joint interface between the blade segments. The blade assembly may also include a pre-loaded beam extending outwardly from the second blade segment across the joint interface such that the pre-loaded beam is received within the first blade segment. The pre-loaded beam may be compressed between the opposed internal structural components of the first blade segment such that a first engagement interface is defined between a first side of the pre-loaded beam and the first internal structural component and a second engagement interface is defined between an opposed second side of the pre-loaded beam and the second internal structural component.
Abstract:
The present disclosure is directed methods for manufacturing spar caps for wind turbine rotor blades. In certain embodiments, the method includes forming an outer frame of the spar cap via at least one of three-dimensional (3D) pultrusion, thermoforming, or 3D printing. As such, the outer frame has a varying cross-section that corresponds to a varying cross-section of the rotor blade along a span thereof. The method also includes arranging a plurality of structural materials (e.g. layers of pultruded plates) within the pultruded outer frame of the spar cap and infusing the structural materials and the outer frame together via a resin material so as to form the spar cap. The resulting spar cap can then be easily incorporated into conventional rotor blade manufacturing processes and/or welded or bonded to an existing rotor blade.
Abstract:
A method for balancing segmented rotor blades for a wind turbine may include determining a weight for each of a plurality of blade segments, wherein each blade segment extends between a first end and a second and is configured to form a common spanwise section of a segmented rotor blade between the first and second ends. The method may also include determining an initial static moment for each blade segment based on the weight of the blade segment, wherein the initial static moment of at least one of the blade segments differing from the initial static moments of the remainder of the blade segments. Additionally, the method may include adding mass to each of the blade segments to increase the initial static moment for each blade segment to a predetermined static moment, wherein the predetermined static moment is greater than each of the initial static moments of the blade segments.
Abstract:
The present disclosure is directed to a method of manufacturing a modular rotor blade for a wind turbine. The method includes providing a plurality of resin systems for manufacturing a plurality of blade components for the modular rotor blade. Each of the resin systems includes at least one of a thermoset material or a thermoplastic material, optionally a fiber reinforcement material, and at least one additive. Thus, the method includes determining a resin system for each of the blade components based on a location and/or function of each blade component in the rotor blade. In addition, the method includes forming each of the blade components of the rotor blade from one of the plurality of resin systems and securing each of the blade components together to form the modular rotor blade.
Abstract:
The present disclosure is directed methods for manufacturing spar caps for wind turbine rotor blades. In certain embodiments, the method includes forming an outer frame or tray of the spar cap via at least one of three-dimensional (3D) pultrusion, thermoforming, or 3D printing. As such, the outer frame has a varying cross-section that corresponds to a varying cross-section of the rotor blade along a span thereof. The method also includes arranging a plurality of structural materials (e.g. layers of pultruded plates) within the pultruded outer frame of the spar cap and infusing the structural materials and the outer frame together via a resin material so as to form the spar cap. The resulting spar cap can then be easily incorporated into conventional rotor blade manufacturing processes and/or welded or bonded to an existing rotor blade.
Abstract:
The present disclosure is directed to a shear web for a rotor blade of a wind turbine and a method of manufacturing and assembling same. The rotor blade generally includes an upper shell member having an upper spar cap configured on an internal surface thereof and a lower shell member having a lower spar cap configured on an internal surface thereof. Further, the shear web extends between the spar caps along a longitudinal length of the blade. In addition, the shear web includes first and second outer pultruded layers at least partially encompassing a core material, wherein end portions of the first and second outer pultruded layers form compressed flanges at opposing ends of the shear web.
Abstract:
In one aspect, a method for manufacturing a spar cap for a wind turbine rotor blade may generally include stacking a plurality of plates together to form a plate assembly, wherein each of the plates is formed from a fiber-reinforced composite including a plurality of fibers surrounded by a thermoplastic resin material. The method may also include positioning the plate assembly relative to a mold defining a mold surface, wherein the mold surface is shaped so as to correspond to at least one blade parameter of the wind turbine rotor blade. In addition, the method may include applying pressure to the plate assembly via the mold such that at least a portion of the plate assembly conforms to the shape of the mold surface.
Abstract:
The present disclosure is directed to methods for joining rotor blade components using thermoplastic welding. The method includes arranging a first thermoplastic component and a second thermoplastic component together at an interface, determining a size of a tolerance gap between the first and second components at the interface, placing a thermoplastic insert between the first and second components at the interface, the insert being larger than the tolerance gap, heating the insert and the first and second components such that the insert begins to flow so as to fill the tolerance gap between the first and second components, applying pressure to the interface such that the insert and the first and second blade components remain substantially in direct contact with each other at the interface, and welding the insert and the first and second components together at the interface, wherein the heat and the applied pressure between the insert and the first and second components at the interface maintain the insert and the first and second substantially in direct contact at the interface during welding.
Abstract:
The present disclosure is directed methods for modifying molds of rotor blades of a wind turbine. In certain embodiments, the blade mold is constructed, at least in part, of a thermoplastic material optionally reinforced with a fiber material. In one embodiment, the method includes identifying at least one blade mold addition for the mold of the rotor blade and positioning the blade mold addition at a predetermined location of the mold of the rotor blade. Further, the blade mold addition is constructed, at least in part, of a thermoplastic material. Thus, the method includes applying at least one of heat, pressure, or one or more chemicals at an interface of the blade mold addition and the mold so as to join the blade mold addition to the mold. In further embodiments, the methods described herein are also directed repairing thermoplastic blade molds.