Abstract:
A composite laminate is made by providing at least a first composite ply and a second composite ply, each having longitudinally oriented fibers in a thermoplastic matrix. The second composite ply is disposed on, and in transverse relation to, the first composite ply. Preferably, the second ply is disposed at 90° relative to the first ply. An article can be manufactured by providing a core material and applying a reinforcing material to a portion of the core material. The reinforcing material is a reinforcing composite ply or a composite laminate as described herein. Optionally, the core material is a prepreg that may be a composite laminate.
Abstract:
A process for fixing an article to a substrate with a mounting set including two receptacles storing an aerobic adhesive and a hydrophilic substance, respectively. The aerobic adhesive and the hydrophilic substance are removed from the two receptacles and then mixed together to prepare the fastening. A layer of the fastening composition is applied to the article. The article is fixed to the substrate by pressing the layer of the fastening composition against the substrate. The aerobic adhesive in the layer hardens because of the moisture contained in the hydrophilic substance.
Abstract:
A joint assembly is provided. The joint assembly includes a first component including a first bond surface and a second component including a second bond surface coupled to the first bond surface such that a bond line is defined therebetween. At least one of the first and second components includes a plurality of contrast particles that diffuse across the bond line when a predetermined amount of heat and pressure are applied to the first and second components.
Abstract:
A process for laminating a material layer to a support including: providing the support, applying the material layer to the support, a heat-activatable adhesive being applied to s side of the material layer facing the dimensionally stable support and/or to the side of the dimensionally stable support facing the material layer, pressing the flexible material layer and the dimensionally stable support together by means of a lower dimensionally stable mold half and an upper dimensionally stable mold half, irradiating the mold halves, the support and the material layer with electromagnetic radiation, in particular with microwave radiation, high-frequency radiation or induction radiation, whereby the adhesive is activated directly or indirectly.
Abstract:
The invention relates to methods of bonding and a conductively bonded joint, provided by high loadings of conductively coated nano scale particulate fillers in a conductive adhesive in combination with a conductive intermediary structure, more particularly to a lightning strike resilient bonded joint between fibre reinforced polymer composites.A method of joining a first fibre reinforced polymer composite surface and a second fibre reinforced polymer composite surface, comprising the steps of providing a conductive intermediary structure between said first and second surfaces, filling the void between said surfaces and enveloping said intermediary structure with a conductive adhesive, curing the conductive adhesive to form a bonded first and second surface.A conductive adhesive comprising a curable binder and a high aspect ratio nanoscale carbon particulate filler present in the range of from 0.1 to 40% wt, wherein said particulate filler comprises a metal coating.
Abstract:
A composite laminate is made by providing at least a first composite ply and a second composite ply, each having longitudinally oriented fibers in a thermoplastic matrix. The second composite ply is disposed on, and in transverse relation to, the first composite ply. Preferably, the second ply is disposed at 90° relative to the first ply. An article can be manufactured by providing a core material and applying a reinforcing material to a portion of the core material. The reinforcing material is a reinforcing composite ply or a composite laminate as described herein. Optionally, the core material is a prepreg that may be a composite laminate.
Abstract:
A process for fixing an article to a substrate with a mounting set including two receptacles storing an aerobic adhesive and a hydrophilic substance, respectively. The aerobic adhesive and the hydrophilic substance are removed from the two receptacles and then mixed together to prepare the fastening. A layer of the fastening composition is applied to the article. The article is fixed to the substrate by pressing the layer of the fastening composition against the substrate. The aerobic adhesive in the layer hardens because of the moisture contained in the hydrophilic substance.
Abstract:
Sensing strain in an adhesively bonded joint includes inducing a strain wave in the joint, and sensing a change in local magnetic characteristics in the joint.
Abstract:
A process for laminating a material layer to a support including: providing the support, applying the material layer to the support, a heat-activatable adhesive being applied to s side of the material layer facing the dimensionally stable support and/or to the side of the dimensionally stable support facing the material layer, pressing the flexible material layer and the dimensionally stable support together by means of a lower dimensionally stable mold half and an upper dimensionally stable mold half, irradiating the mold halves, the support and the material layer with electromagnetic radiation, in particular with microwave radiation, high-frequency radiation or induction radiation, whereby the adhesive is activated directly or indirectly.
Abstract:
In the composite, an aluminum-plated steel sheet and a resin are securely and integrally joined together. Through chemical etching, the aluminum-plated steel sheet is caused to have a surface configuration, in which three-dimensional protrusions having shapes with a minor diameter of at least 0.3 μm and a major diameter of at least 3 μm are scattered over a plain part and a portion covered with shallow fine recesses with a diameter of 20 to 50 nm in a state of being distributed adjacent to each other on the plain part accounts for 30 to 50% of the surface area of the plain part. The surface of the three-dimensional protrusions is mainly ceramic containing silicon and the plain part is mainly ceramic containing aluminum. The resin is joined through injection molding with the aluminum-plated steel sheet having been inserted into a metallic mold.