摘要:
Provided is an organic light emitting display device. An organic light emitting display device according to one embodiment of the present invention comprises a first substrate; a second substrate comprising an interior surface opposing the first substrate; an array of organic light emitting pixels formed between the first and second substrates, the array comprising a top surface facing the second substrate; a frit seal interposed between the first and second substrates while surrounding the array; and a film structure comprising one or more layered films, the film structure comprising a portion interposed between the array and the second substrate, the film structure contacting the interior surface and the top surface; and wherein the second substrate comprises a recess on interior surface.
摘要:
An organic electroluminescent device and a method of preparing the same are provided. The organic electroluminescent device includes a sealing layer which is formed on a sealing substrate, and which includes a cohesion layer, a transparent polymer layer, and a transparent moisture absorption layer. Since the transparent moisture absorption layer of the organic electroluminescent device is provided to a sealing substrate using an attaching method, the organic electroluminescent device has an improved life span property due to a firm sealed structure and better light extraction efficiency due to the transparent moisture absorption layer below the sealing substrate.
摘要:
The present invention concerns an antenna connection device, and more particularly, an antenna connection device that effectively dissipates external load through two tension portions and a curved surface portion of a supporting end, without needing a rubber stopper. The antenna connection device according to the present invention comprises: a flat plate-shaped fixing part; a first tension portion extending from an end of the fixing part and bent around; a free part comprising a long oblique portion extending from an end of the first tension portion and bent and extended so as to oppose the fixing part, and a short oblique portion bent and extended from an end of the long oblique portion; a second tension portion extending from the other end of the fixing part and bent around; and a supporting part comprising a flat portion flatly extending from an end of the second tension portion, and a curved surface portion bent and extended from an end of the flat portion so as to oppose the fixing part and bent around and extended toward the first tension portion, the curved surface portion being disposed under the free part.
摘要:
A flat panel display and method of fabricating the same are disclosed. The flat panel display includes a first substrate having a pixel region; a light-emitting element located on the pixel region; a second substrate located opposite the first substrate; and a sealant located between the first and second substrates to cover the light-emitting element. At least one of the first and second substrates includes a groove formed around at least a portion of the circumference surrounding the pixel region. When the first and second substrates are pressed together with the sealant between them, the sealant spreads, covering the light-emitting element, and at least partially filling the groove.
摘要:
Provided is a method of forming a semiconductor package. In the method, a first package including a first chip on a first substrate is formed, a second package including a second chip on a second substrate is formed, a moulding cap provided with a via hole and a recess structure configured to receive the first chip is formed, and the second package is provided on the first package with the moulding cap being therebetween such that the recess receives the first chip. The via hole and the recess structure are simultaneously foamed.
摘要:
A flat panel display includes a glass substrate, an organic light-emitting part, and a sealing part. The organic light-emitting part includes one or more organic light-emitting devices (OLED) formed on a surface of the glass substrate, which has a thickness of about 0.05 mm to about 0.5 mm. The sealing part seals the organic light-emitting part and protects it from damage during the manufacturing process. A method for manufacturing the flat panel display includes preparing a glass substrate of approximately 0.7 mm thickness or greater; forming a plurality of organic light-emitting devices on a surface of the glass substrate, wherein a group of one or more of the plurality of organic light-emitting devices constitutes an organic light-emitting part; sealing each organic light-emitting part; and etching the glass substrate to a predetermined thickness.
摘要:
A passive optical network includes: a central office for generating multiplexed downstream optical signals and receiving an upstream optical signal; a plurality of optical network units for receiving a corresponding downstream optical signal and generating subcarrier channels carrying electrical data of an assigned frequency; and a remote node for photoelectrically converting the channels into electrical data, electro-optically converting the electrical data into at least one upstream optical signal.
摘要:
A method of manufacturing a flat panel display device is disclosed. In one embodiment, the method includes: i) forming a plurality of light emitting units on a first substrate, each of the plurality of light emitting units including a light emitting element, ii) providing a second substrate, iii) placing glass frits between the first and second substrates, iv) radiating a first laser beam, having a first intensity, on one of the first and second substrates, wherein the first laser is configured to melt the grass frits and combine the first and second substrates and v) radiating a second laser beam, having a second intensity, on the first irradiated region so as to anneal the first or second substrate, wherein the second intensity is different from the first intensity. According to one embodiment, the substrate cutting quality can be simply improved.
摘要:
Provided are a donor substrate for laser induced thermal imaging (LITI) and a method of fabricating an organic light emitting diode (OLED) using the same, which can prevent a transferred emission layer from being damaged by heat and thus prevent wrinkles from forming on the surface thereof. The donor substrate includes a base layer, a light-to-heat conversion layer disposed on the base layer, a first transfer layer disposed on the light-to-heat conversion layer and including an organic layer, an inorganic layer, or a double layer thereof, and a second transfer layer disposed on the first transfer layer and including an emission layer. The first transfer layer has an absolute value of lowest unoccupied molecular orbital energy level of 2.6 to 3.0 eV and a band gap energy of 2.8 to 3.4 eV.
摘要:
A pyrene compound is provided. The pyrene compound is represented by Formula 1: wherein A1 and A2 are as defined in the specification. Further provided is an organic electroluminescent device using the pyrene compound. The organic electroluminescent device has high color purity of blue light and shows long life characteristics. Therefore, the organic electroluminescent device is suitable for use in displays and lighting systems.