Abstract:
A method and apparatus for affixing a functional film on a panel surface having a curvature in three dimensional directions with at least one pushing roller. A pressing roller which is elastic has a shaft inside the roller. The shaft has a varied diameter of concave curvature with the largest portions at the ends of the shaft. The inner portion of the elastic roller is separated from the shaft by a clearance which is greater in the middle of the shaft. When the roller is pressed upon a three dimensional panel, the elastic roller is deformed into the clearance area and against the shaft. This permits even pressure to be applied across the panel. In a second embodiment, a main pushing roller unit may travel along the direction while pushing the functional film against the panel surface, followed by the two follow-up displacement pushing roller units which are displayed in response to the travel of the main pushing roller unit while pushing the functional film against the panel surface.
Abstract:
A resin-molded electronic circuit device is provided with a protection resin molded with covering electronic components and an electronic circuit substrate and having almost the same coefficient of thermal expansion as that of a metal forming the electronic components and the electronic circuit substrate, and a connector mounted at an end of the protection resin and functioning as an external connecting terminal of the electronic circuit substrate. Since a case for housing the protection resin is unnecessary, it is possible to decrease the number of components and man-hours, and enhance the outside appearance of the electronic circuit device.
Abstract:
An automatic test handler system for automatically supplying IC devices to be tested to an IC tester and sorting the tested IC devices based on the test results. The system includes a testing machine for testing the IC devices by contacting the IC devices with test contactors. Test signals are provided from the IC tester and the resulting signals from the IC devices are received. The testing machine is installed in a test room in which dust, temperature and humidity are controlled in a high degree. A sorting machine is installed outside of the test room for sorting the IC devices that have been tested based on the test results. The sorting machine has a plurality of sort stations for receiving the IC devices based on categories defined in the test results. Tray cassettes hold a plurality of IC trays containing the IC devices, and both the tray cassettes and IC trays are provided with identification numbers. The trays are horizontally transferred on the testing machine and the sorting machine, and a data communication network connected between the testing machine and the sorting machine transmits the test results and position information of the IC devices in the IC trays.
Abstract:
A cathode-ray tube (CRT) of anti-static-processed type and further a cathode-ray tube which screens a leakage electric field (VLF band width) has a triple coat layer formed on a face plate thereof. The triple coat layer includes a high-refractive transparent conductive layer, a low-refractive smooth transparent layer, and a low-refractive rough transparent layer; and is formed on the face plate to reduce the weight of the CRT, minimize the deterioration of the resolution and contrast of images displayed, diminish the reflection of external light, and provide sufficient film strength for practical use.
Abstract:
A 2-CRT type projection apparatus having a green and blue two-color cathode ray tube and a green and red two-color cathode ray tube and producing a projected picture of high resolution and brightness. The green phosphor of one of the two-color cathode ray tubes is a phosphor which emits green light of high brightness and the green phosphor of the other cathode ray tube is a phosphor which emits green light extending a color reproduction range. Further, stripe directions of the two-color cathode ray tubes are substantially perpendicular to each other.
Abstract:
A projection cathode ray tube (CRT) includes a multilayered interference film interposed between a face plate pane and luminescent material layer. This multilayered interference film is composed of alternately superimposed of high refractive index material layers and low refractive index material layers, and the number of layers to be superimposed is four or five. By using a multilayered interference film of only four or five layers, the interference layer is not subject to cracks or film separation occurring during heat processing, due to the difference in thermal expansion coefficients between high and low refractive index material. Further, there still remains enough layers to produce a display highly improved in brightness in the direction of the normal of the face plate pane of the CRT.
Abstract:
An ignition apparatus which determines ignition timing corresponding to the running state of an internal combustion engine. Ignition timing is advanced for a period when a choke switch 21 used for improving startability of the engine at a low temperature is closed, and for a predetermined period after the choke switch is opened as determined by the time constant of an RC circuit. When the predetermined period passes after the choke switch is opened, the ignition timing is delayed to a characteristic suitable for the running of the engine after warm up.
Abstract:
A method of forming an electron reflecting layer on a perforated shadow mask in a color cathode ray tube, which method comprises the steps of preparing an aqueous suspension containing water glass and powdered bismuth oxide, applying the suspension by the use of a spraying technique to one of opposite surfaces of the perforated shadow mask which confronts a color electron gun assembly within the color cathode ray tube, thereby to form an electron reflecting coating, and drying the coating to complete the electron reflecting layer. The aqueous suspension is prepared by adding to water both the powdered bismuth oxide of 0.1 to 1.0 .mu.m in average particle size in a quantity within the range of 20 to 45 percent by weight relative to the total weight of the aqueous suspension and the water glass having a solid component within the range of 25 to 30 percent by weight relative to the total weight of the water glass, the amount of the water glass added to the water being within the range of 37.5 to 62.5 percent by weight relative to the amount of the powdered bismuth oxide used.
Abstract:
A novel and improved ignition system for an engine with a reverse-rotation preventing function capable of ensuring a proper engine operation over the entire operating range of the engine, particularly during the high-speed rotation thereof. The ignition system comprises a generator coil for generating an alternating current output in synchronism with the rotation of the engine; an ignition circuit connected to receive the alternating current output of the generator coil for producing a high voltage for ignition; a reverse-rotation preventing circuit operable in response to the output of a predetermined polarity of the generator coil to prevent the operation of the ignition circuit as along as the predetermined polarity of the generator output remains unchanged; an engine-rotation sensing circuit for sensing the number of revolutions per minute of the engine; and a disabling circuit for disabling the reverse-rotation preventing circuit when the number of revolutions per minute of the engine as sensed by the engine-rotation sensing circuit exceeds a predetermined level.
Abstract:
An engine ignition system comprising a signal coil for generating a first reference signal at an advanced angle and a second reference signal at a start position in synchronization with the rotation of an engine, a throttle sensor for detecting a throttle opening degree and a first ignition timing calculation circuit for calculating an ignition timing corresponding to an output signal from the throttle sensor in accordance with the first reference signal when the ignition timing is advanced from a predetermined ignition timing. The ignition timing system further comprises a second ignition timing calculation circuit for calculating an ignition timing corresponding to an output signal from the throttle sensor in accordance with the second reference signal when the ignition timing is retarded from a predetermined ignition timing. Either one of the first and the second ignition timing calculating circuits may comprise a function generator circuit having a calculating function equal to the first and said second ignition timing circuits for changing ignition timing characteristics of the first and the second ignition timing calculation circuits relative to the throttle opening degree into linear characteristics.