Abstract:
According to one embodiment, an electrode is provided. The electrode includes the active material-containing layer formed on the current collector and including active material particles. The particle size distribution chart obtained by the laser diffraction scattering method for the active material particles includes the first region and the second region. The first particle group included in the first region includes the first active material particles, and the second particle group included in the second region includes second active material particles. The carbon coverage of the first particle group is higher than the carbon coverage of the second particle group.
Abstract:
According to one embodiment, an active material is provided. The active material includes particles of a monoclinic niobium titanium composite oxide. The particles include primary particles. The primary particles have an average aspect ratio of 5 or more.
Abstract:
According to one embodiment, an electrode is provided. The electrode includes an active material-containing layer which contains an active material. The active material includes a plurality of primary particles containing a niobium-titanium composite oxide. The average value (FUave) of the roughness shape coefficient (FU) according to Formula (1) below is 0.70 or more in 100 primary particles among the plurality of primary particles. [ Formula 1 ] FU = f f c = 4 π a 2 ( 1 )
Abstract:
According to one embodiment, an active material is provided. This active material includes active material particles containing orthorhombic Na-containing niobium titanium composite oxide, and satisfies the following formula (1): 1≦A5/A0 (1) where A5 is a mole content ratio of a Li mole content L5 to a total of a Ti mole content T5 and a Nb mole content N5, and A0 is a mole content ratio of a Li mole content L0 to a total of a Ti mole content T0 and a Nb mole content N0.
Abstract:
A non-aqueous electrolyte battery includes an electrode group including positive, negative and bipolar electrodes and separators interposed between these electrodes. In the positive electrode, positive electrode active material layers are formed on both side surfaces of a current collector. In the negative electrode, negative electrode active material layers are formed on both side surfaces of a current collector. In the bipolar electrode, positive and negative electrode active material layers are formed on both side surfaces of a current collector respectively. In the group, these electrodes are stacked with the interposed separators. The group includes current collecting tabs for these electrodes. Connecting portions of these tabs are arranged in different positions on an outer periphery of the group.
Abstract:
According to one embodiment, there is provided an active material. The active material includes particles of a Na-containing niobium titanium composite oxide having an orthorhombic crystal structure. An intensity ratio I1/I2 is within a range of 0.12≦I1/I2≦0.25 in an X-ray diffraction pattern of the active material, according to X-ray diffraction measurement using a Cu-Kα ray. I1 is a peak intensity of a peak P1 that is present within a range where 2θ is 27° to 28° in the X-ray diffraction pattern of the active material. I2 is a peak intensity of a peak P2 that is present within a range where 2θ is 23° to 24° in the X-ray diffraction pattern of the active material.
Abstract:
According to one embodiment, a laminate is provided. The laminate includes an active material layer including a plural of active material particles and a separator layered on the active material layer. The separator includes a first surface and a second surface opposed to the first surface, and includes particles containing an inorganic compound having lithium ion conductivity at 25° C. of 1×10−10 S/cm or more.
Abstract:
According to one embodiment, a secondary battery including a positive electrode, a negative electrode, and an electrolyte is provided. The negative electrode includes titanium-containing oxide and at least one kind of element selected from the group consisting of B, P, Al, La, Zr, Ge, Zn, Sn, Ga, Pb, In, Bi, and Tl. The electrolyte includes lithium ions and a solvent containing water.
Abstract:
A non-aqueous electrolyte battery includes a bipolar electrode and a non-aqueous electrolyte. The electrode includes positive-pole and negative-pole active material layers formed on both side surfaces of a current collector. The electrode is divided into plural parts each having a predetermined length in one direction, and is sequentially and alternately bent at every lines between the parts in opposite directions so that the parts are overlapped with each other.
Abstract:
According to one embodiment, there is provided an electrode. The electrode includes an orthorhombic Na-containing niobium titanium composite oxide as a first composite oxide and a second composite oxide represented by a general formula of Li2+aNa2+bTi6O14, wherein −0.2≦a≦2 and −0.2≦b≦0.2.