摘要:
A magnetoresistive element has a magnetization pinned layer a magnetization direction of which is substantially pinned in one direction, a magnetization free layer a magnetization direction of which varies depending on an external field, and a spacer layer including an insulating layer provided between the magnetization pinned layer and the magnetization free layer and current paths penetrating the insulating layer, the magnetization pinned layer or magnetization free layer located under the spacer layer comprising crystal grains separated by grain boundaries extending across a thickness thereof, in which, supposing that an in-plane position of one end of each of the crystal grains is set to 0 and an in-plane position of a grain boundary adjacent to the other end of the crystal grain is set to 100, the current path corresponding the crystal grain is formed on a region in a range between 20 and 80 of the in-plane position.
摘要:
A magnetoresistance effect element includes a nonmagnetic spacer layer, first and second ferromagnetic layer separated by the nonmagnetic spacer layer, and a nonmagnetic conductivity layer. The first ferromagnetic layer has a magnetization direction at an angle relative to a magnetization direction of the second ferromagnetic layer at zero applied magnetic field. The second ferromagnetic layer has first and second ferromagnetic films antiferromagnetically coupled to one another and an antiferromagnetically coupling film located between and in contact with the first and second ferromagnetic films. The magnetization of the first ferromagnetic layer freely rotates in a magnetic field signal. The nonmagnetic conductivity layer is disposed in contact with the first ferromagnetic layer so that the first ferromagnetic layer is disposed between the nonmagnetic high-conductivity layer and the nonmagnetic spacer layer. The first ferromagnetic layer has a film thickness between 0.5 nanometers and 4.5 nanometers.
摘要:
A magnetoresistive element comprises an exchange coupling film having a under layer, an antiferromagnetic film and a ferromagnetic film, which are laminated in that order, the under layer including a metal having a face centered cubic crystal structure or hexagonal closest packing crystal structure which have a longer nearest neighbor atomic distance than that of the antiferromagnetic film. With this construction, it is possible to improve the exchange coupling field and to satisfy a stable output over a long period of time. A magnetoresistive element having a dual spin valve structure has a magnetization adjusting layer, which is antiferromagnetically connected to a pinned layer via an anti-parallel connection layer, to adjust the value of the product of the saturation magnetization of each of the magnetization adjusting layer and the pinned layer by the thickness thereof. Moreover, a magnetoresistance head use a giant magnetoresistance effect, and has at least one pair of pinned layer and free layer arranged via a non-magnetic spacer layer. The pinned layer has a pair of ferromagnetic layers which have different compositions and different coercive forces and which are antiferromagnetically connected to each other via a connection layer, so that the effective exchange coupling field of the pinned layer is 200 Oe or more.
摘要:
According to one embodiment, a magnetoresistive element includes a magnetization fixed layer, an intermediate layer provided on the magnetization fixed layer, a free layer provided on the intermediate layer, a separating layer composed of nonmagnetic metal and provided on the free layer, and a fluctuation compensated layer whose static magnetic coupling with the free layer is disconnected by the separating layer, whose magnetization direction is fixed so as to be antiparallel to the magnetization direction of the magnetization fixed layer, and provided on the separating layer.
摘要:
According to one embodiment, a yoke-type magnetic head for reading out magnetic information from a medium in which information is magnetically recorded in a track direction, the head includes a magnetic pole which is provided on a plane perpendicular to a linear recording direction and has an opposing surface facing the medium, a saturation magnetic flux density Bs1, and a volume V1, a sub yoke which is formed on the plane by being connected to the magnetic pole, and has a length SYW in a direction perpendicular to the linear recording direction longer than a length SYH in a direction perpendicular to a surface of the medium, and a saturation magnetic flux density Bs2 and a volume V2, the product Bs2V2 of which is larger than the product Bs1V1, and a magnetoresistance effect film which is formed between the sub yoke and the opposing surface, and abuts the magnetic pole.
摘要:
According to one embodiment, a yoke-type magnetic head for reading out magnetic information from a medium in which information is magnetically recorded in a track direction, the head includes a magnetic pole which is provided on a plane perpendicular to a linear recording direction and has an opposing surface facing the medium, a saturation magnetic flux density Bs1, and a volume V1, a sub yoke which is formed on the plane by being connected to the magnetic pole, and has a length SYW in a direction perpendicular to the linear recording direction longer than a length SYH in a direction perpendicular to a surface of the medium, and a saturation magnetic flux density Bs2 and a volume V2, the product Bs2V2 of which is larger than the product Bs1V1, and a magnetoresistance effect film which is formed between the sub yoke and the opposing surface, and abuts the magnetic pole.
摘要翻译:根据一个实施例,一种磁轭式磁头用于从磁道方向上磁记录信息的介质中读出磁信息,该磁头包括设在垂直于线性记录方向的平面上的磁极,并且具有 面向介质的相对表面,饱和磁通密度Bs 1和体积V 1,通过连接到磁极而形成在平面上的子轭,并且在垂直于线性的方向上具有长度SYW 记录方向长于在与介质表面垂直的方向上的长度SYH,以及饱和磁通密度Bs 2和体积V 2,其乘积Bs 2 V 2大于乘积Bs 1 V 1, 以及形成在子轭和相对表面之间并与磁极相邻的磁阻效应膜。