摘要:
There are provided a magnetoresistance effect element, a magnetic head, a magnetic head assembly and a magnetic recording system, which have high sensitivity and high reliability. The magnetoresistance effect element has two ferromagnetic layers, a non-magnetic layer provided between the ferromagnetic layers, and a layer containing an oxide or nitride as a principal component, wherein the layer containing the oxide or nitride as the principal component contains a magnetic transition metal element which does not bond to oxygen and nitrogen and which is at least one of Co, Fe and Ni.
摘要:
A magnetoresistance effect element comprises a magnetoresistance effect film and a pair of electrode. The magnetoresistance effect film having a first magnetic layer whose direction of magnetization is substantially pinned in one direction; a second magnetic layer whose direction of magnetization changes in response to an external magnetic field; a nonmagnetic intermediate layer located between the first and second magnetic layers; and a film provided in the first magnetic layer, in the second magnetic layer, at a interface between the first magnetic layer and the nonmagnetic intermediate layer, and/or at a interface between the second magnetic layer and the nonmagnetic intermediate layer, the film having a thickness not larger than 3 nanometers, and the film has as least one selected from the group consisting of nitride, oxinitride, phosphide, and fluoride. The pair of electrodes are electrically connected to the magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film.
摘要:
In a spin valve type element, an interface insertion layer (32, 34) of a material exhibiting large spin-dependent interface scattering is inserted in a location of a magnetically pinned layer (16) or a magnetically free layer (20) closer to a nonmagnetic intermediate layer (18). A nonmagnetic back layer (36) may be additionally inserted as an interface not in contact with the nonmagnetic intermediate layer to increase the output by making use of spin-dependent interface scattering along the interface between the pinned layer and the nonmagnetic back layer or between the free layer and the nonmagnetic back layer.
摘要:
A magnetoresistance effect element comprises a magnetoresistance effect film and a pair of electrode. The magnetoresistance effect film having a first magnetic layer whose direction of magnetization is substantially pinned in one direction; a second magnetic layer whose direction of magnetization changes in response to an external magnetic field; a nonmagnetic intermediate layer located between the first and second magnetic layers; and a film provided in the first magnetic layer, in the second magnetic layer, at a interface between the first magnetic layer and the nonmagnetic intermediate layer, and/or at a interface between the second magnetic layer and the nonmagnetic intermediate layer, the film having a thickness not larger than 3 nanometers, and the film has as least one selected from the group consisting of oxide, nitride, oxinitride, phosphide, and fluoride. The pair of electrodes are electrically connected to the magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film.
摘要:
A magnetoresistive effect element, includes: a magnetoresistive effect film including: a magnetization fixed layer having a first ferromagnetic film of which magnetization direction is practically fixed in one direction; a magnetization free layer having a second ferromagnetic film of which magnetization direction changes with corresponding to an external magnetic field; and a spacer layer disposed between the magnetization fixed layer and magnetization free layer, and having an insulating layer and a ferromagnetic metal portion penetrating through the insulating layer; a pair of electrodes applying a sense current in a perpendicular direction relative to a film surface of the magnetoresistive effect film; and a layer containing a non-ferromagnetic element disposed at least one of an inside of the magnetization fixed layer-and an inside of the magnetization free layer.
摘要:
A magnetoresistive effect element includes a magnetoresistive effect film including a magnetization pinned layer, a magnetization free layer, and an intermediate layer interposed therebetween and having a magnetic region and a nonmagnetic region whose electrical resistance is higher than the magnetic region. A sense current is passed to the magnetoresistive effect film in a direction substantially perpendicular to the film plane thereof. The magnetic region of the intermediate layer penetrates the nonmagnetic region locally and extends in the direction substantially perpendicular to the film plane. The nonmagnetic region contains a nonmagnetic metallic element having a larger surface energy than a magnetic metallic element contained in the magnetic region.
摘要:
A magnetoresistance effect element comprises a magnetoresistance effect film and a pair of electrode. The magnetoresistance effect film having a first magnetic layer whose direction of magnetization is substantially pinned in one direction; a second magnetic layer whose direction of magnetization changes in response to an external magnetic field; a nonmagnetic intermediate layer located between the first and second magnetic layers; and a film provided in the first magnetic layer, in the second magnetic layer, at a interface between the first magnetic layer and the nonmagnetic intermediate layer, and/or at a interface between the second magnetic layer and the nonmagnetic intermediate layer, the film having a thickness not larger than 3 nanometers, and the film has as least one selected from the group consisting of nitride, oxinitride, phosphide, and fluoride. The pair of electrodes are electrically connected to the magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film.
摘要:
In a CPP element using a metal intermediate layer excellent in shot noise and response to high frequencies unlike a TMR element, its magnetoresistive effect film includes a magnetic layer mainly made of a half-metal exhibiting ferromagnetism, ferrimagnetism or antiferromagnetism, and largely variable in way of conduction in response to spin direction of electrons.
摘要:
A magnetoresistive element has a magnetoresistive film and a pair of electrodes adapted to flow a sense current in a direction substantially perpendicular to a plane of the magnetoresistive film. The magnetoresistive film includes first and second magnetization free layers and first to fourth magnetization pinned layers with nonmagnetic intermediate layers interposed therebetween. The second magnetization pinned layer and the third magnetization pinned layer are formed between the second nonmagnetic intermediate layer and the third nonmagnetic intermediate layer. The directions of magnetization of the first and second magnetization pinned layers are substantially parallel to each other. The directions of magnetization of the third and fourth magnetization pinned layers are substantially parallel to each other. Further, the direction of magnetization of the second magnetization pinned layer is substantially antiparallel to the direction of magnetization of the third magnetization pinned layer.
摘要:
A magnetoresistance effect element comprises a magnetoresistance effect film including a magnetically pinned layer whose direction of magnetization is pinned substantially in one direction, a magnetically free layer whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic intermediate layer located between the pinned layer and the free layer; and a pair of electrodes electrically connected to said magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film. The intermediate layer has a first layer including a first region whose resistance is relatively high and second regions whose resistance is relatively low. The sense current preferentially flows through the second regions when the current passes the first layer. Alternatively, the concentration of oxygen in the first layer may have a two-dimensional fluctuation, and a first region where the concentration of oxygen is equal to or higher than 40 atomic % and a second region where the concentration of oxygen is equal to or lower than 35 atomic % may be provided in the first layer.