摘要:
Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween. The device is provided with a means of keeping the magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer, and with a nonmagnetic high-conductivity layer as disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.
摘要:
Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween. The device is provided with a means of keeping the magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer, and with a nonmagnetic high-conductivity layer as disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.
摘要:
A magnetoresistance effect element, comprising a nonmagnetic spacer layer, first and second ferromagnetic layers separated by the nonmagnetic spacer layer, the first ferromagnetic layer having a magnetization direction at an angle relative to a magnetization direction of the second ferromagnetic layer at zero applied magnetic field, the magnetization of the first ferromagnetic layer freely rotating in a magnetic field signal, a magnetoresistance effect-improving layer comprising a plurality of metal films and disposed in contact with the first ferromagnetic layer so that the first ferromagnetic layer is disposed between the nonmagnetic spacer layer and the magnetoresistance effect-improving layer, one of the plurality of metal films disposed in contact with the first ferromagnetic layer contains metal element of not solid solution with metal element of the first ferromagnetic layer and a nonmagnetic underlayer or a nonmagnetic protecting layer disposed in contact with the magnetoresistance effect-improving layer so that the magnetoresistance effect-improving layer is disposed between the first ferromagnetic layer and the nonmagnetic underlayer or the nonmagnetic protecting layer.
摘要:
A magnetoresistance effect (MR) device incorporating a spin valve film, and a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device, wherein the magnetization direction of a free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. A pinned magnetic layer includes a pair of ferromagnetic films antiferromagnetically coupled to each other via a coupling film existing therebetween. The magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer is maintained, and a nonmagnetic high-conductivity layer is disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.
摘要:
Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween. The device is provided with a means of keeping the magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer, and with a nonmagnetic high-conductivity layer as disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.
摘要:
Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween. The device is provided with a means of keeping the magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer, and with a nonmagnetic high-conductivity layer as disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.
摘要:
A magnetoresistance effect element includes a nonmagnetic spacer layer, first and second ferromagnetic layer separated by the nonmagnetic spacer layer, and a nonmagnetic conductivity layer. The first ferromagnetic layer has a magnetization direction at an angle relative to a magnetization direction of the second ferromagnetic layer at zero applied magnetic field. The second ferromagnetic layer has first and second ferromagnetic films antiferromagnetically coupled to one another and an antiferromagnetically coupling film located between and in contact with the first and second ferromagnetic films. The magnetization of the first ferromagnetic layer freely rotates in a magnetic field signal. The nonmagnetic conductivity layer is disposed in contact with the first ferromagnetic layer so that the first ferromagnetic layer is disposed between the nonmagnetic high-conductivity layer and the nonmagnetic spacer layer. The first ferromagnetic layer has a film thickness between 0.5 nanometers and 4.5 nanometers.
摘要:
A magnetoresistance effect element includes a free layer, a pinned layer and a non-magnetic intermediate layer interposed between the free layer and the pinned layer. Additionally, a metal barrier layer is provided adjacent to the first magnetic layer. An electron reflecting layer located adjacent to the metal barrier layer contains at least one selected from oxides, nitrides, carbides, fluorides, chlorides, sulfides and borides.
摘要:
According to the another aspect of the invention, a magnetoresistance effect element having a magnetoresistance effect film which includes a crystal growth controlling layer as one of films therein, characterized in that a roughness along a boundary between films overlying said crystal growth controlling layer is smaller than a roughness along a boundary between films underlying said crystal growth controlling layer is provided. According to the another aspect of the invention, a magnetoresistance effect element comprising a free layer, pinned layer and a non-magnetic intermediate layer interposed between said free layer and pinned layer, characterized in further comprising a metal barrier layer provided adjacent to said first magnetic layer, and an electron reflecting layer located adjacent to said metal barrier layer and containing at least one selected from oxides, nitrides, carbides, fluorides, chlorides, sulfides and borides is also provided.
摘要:
In a spin valve type element, an interface insertion layer (32, 34) of a material exhibiting large spin-dependent interface scattering is inserted in a location of a magnetically pinned layer (16) or a magnetically free layer (20) closer to a nonmagnetic intermediate layer (18). A nonmagnetic back layer (36) may be additionally inserted as an interface not in contact with the nonmagnetic intermediate layer to increase the output by making use of spin-dependent interface scattering along the interface between the pinned layer and the nonmagnetic back layer or between the free layer and the nonmagnetic back layer.