摘要:
A method of forming a silicide region (80) on a Si substrate (10) in the manufacturing of semiconductor integrated devices, a method of forming a semiconductor device (MISFET), and a device having suicide regions formed by the present method. The method of forming a silicide region involves forming a silicide region (80) in the (crystalline) Si substrate having an upper surface (12) and a lower surface (14). The method comprises the steps of first forming an amorphous doped region (40) in the Si substrate at or near the upper surface, to a predetermined depth (d). This results in the formation of an amorphous-crystalline interface (I) between the amorphous doped region and the crystalline Si substrate. The next step is forming a metal layer (60) atop the Si substrate upper surface, in contact with the amorphous doped region. The next step involves performing backside irradiation with a first radiation beam (66). This heats the interface sufficient to initiate explosive recrystallization (XRC) of amorphous doped region. This, in turn, provides heat to the metal layer sufficient to cause the diffusion of metal atoms from the metal layer into the amorphous doped region. In this manner, a silicide region of very high quality and low sheet resistance is formed in the Si substrate.
摘要:
A system and method of pass through in a heterogeneous distributed database environment allows a client to specify syntax that is only understood and processed by a database instance of a back-end server even if it is not understood by an interface module. A hybrid pass through feature provides a combination of both a pass through mode and a native mode allowing statements to be passed through to the database instance or to be processed by the interface module. To accomplish this, a pass through session is established. The scope of the pass through session is defined by statements that establish and terminate the session. Rules determine whether dynamic statements are handled in pass through mode or in native mode based on whether the statements are within or outside of the scope of the pass through session. Input host variable support is provided to database instances that don't otherwise support host variables.
摘要:
High performance query optimization in a heterogeneous distributed multi-database system. An efficient technique is disclosed to enable an interface module, located between a host computer and a back-end database system, to perform maximal query or subquery push down. That is, the interface module is configured to select either the entire query or the largest subquery(s) that can be forwarded to a single database instance within the back-end database system without extensive decomposition or extraneous commands. The interface module has stored therein a data structure having information concerning the data stored in, and the capabilities of, each of the back-end databases in the heterogeneous environment. Based on this information, the interface module determines whether a query or subquery satisfies two criteria. First, the interface module determines whether a single database instance within the heterogeneous environment contains all of the data referenced in the query or subquery. This is referred to as data coverage. Next, the interface module determines whether the same single database instance provides all the functions or capabilities needed to satisfy the query or subquery. This is referred to as function or capability coverage. If both of these criteria are met, the query or subquery can be pushed down to the single database instance.
摘要:
High performance query optimization in a heterogeneous distributed multi-database system. An efficient technique is disclosed to enable an interface module, located between a host computer and a back-end database system, to perform maximal query or subquery push down. That is, the interface module is configured to select either the entire query or the largest subquery(s) that can be forwarded to a single database instance within the back-end database system without extensive decomposition or extraneous commands. The interface module has stored therein a data structure having information concerning the data stored in, and the capabilities of, each of the back-end databases in the heterogeneous environment. Based on this information, the interface module determines whether a query or subquery satisfies two criteria. First, the interface module determines whether a single database instance within the heterogeneous environment contains all of the data referenced in the query or subquery. This is referred to as data coverage. Next, the interface module determines whether the same single database instance provides all the functions or capabilities needed to satisfy the query or subquery. This is referred to as function or capability coverage. If both of these criteria are met, the query or subquery can be pushed down to the single database instance.
摘要:
A method of passivating a surface of a Group III-V compound substrate comprising exposing the surface to a solution comprising P.sub.2 S.sub.5, S and (NH.sub.4).sub.2 S for a time sufficient to prevent formation of segregated surface atoms and oxides on the substrate surface, thereby minimizing the density of surface states thereof, the solution containing P.sub.2 S.sub.5, S and (NH.sub.4).sub.2 S in a ratio.
摘要:
Results of a relational data base management system are joined in a process requiring, first, existence of an index on the join columns of the inner table, and, second, ordering on the join column of the first table. First, the index on the inner table's join column is scanned for rows of the inner table having join column values matching such values of rows in the outer table. This is done in a single pass through the outer table. Next, a temporary work table containing the identifiers of inner table rows having join column values matching those of the outer table is produced by concatenating the row identifiers to their matching outer table rows. Following this, the temporary work table is ordered by the identifiers. Last, the identifier list of inner table rows is used to retrieve the corresponding rows of the inner table. All predicates local to the inner table are applied to the retrieved rows, and those satisfying these local predicates are combined with their matching outer table rows and returned to the user.
摘要:
Methods of annealing a thin semiconductor wafer are disclosed. The methods allow for high-temperature annealing of one side of a thin semiconductor wafer without damaging or overheating heat-sensitive electronic device features that are either on the other side of the wafer or embedded within the wafer. The annealing is performed at a temperature below the melting point of the wafer so that no significant dopant redistribution occurs during the annealing process. The methods can be applied to activating dopants or to forming ohmic contacts.
摘要:
A glass substrate storage and transportation system is provided, including a storage platform and a transportation platform. The storage platform includes a plurality of storage housings for receiving the upright glass substrates. A glass substrate storage platform is also provided. The glass substrate storage and transportation system and the glass substrate storage platform adopt a vertical storage mode to store the glass substrates for solving the technical problems of the space utilization rate being low and the product having defect resulted by the particle pollution.
摘要:
Embodiments of techniques and systems for parallel XML parsing are described. An event-level XML parser may include a lightweight events partitioning stage, parallel events parsing stages, and a post-processing stage. The events partition may pick out event boundaries using single-instruction, multiple-data instructions to find occurrences of the “
摘要:
Systems and methods for performing ultrafast laser annealing in a manner that reduces pattern density effects in integrated circuit manufacturing are disclosed. The method includes scanning at least one first laser beam over the patterned surface of a substrate. The at least one first laser beam is configured to heat the patterned surface to a non-melt temperature Tnonmelt that is within about 400° C. of the melt temperature Tmelt. The method also includes scanning at least one second laser beam over the patterned surface and relative to the first laser beam. The at least one second laser beam is pulsed and is configured to heat the patterned surface from the non-melt temperature provided by the at least one first laser beam up to the melt temperature.