Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A base station and method thereof are provided for hybrid automatic retransmit request (HARQ) feedback in a wireless communication system. A method includes generating transmission beam information for transmitting hybrid automatic retransmit request (HARQ) feedback information for an uplink data packet received from a terminal; scheduling a HARQ feedback channel in a downlink subframe, based on the transmission beam information; and transmitting the HARQ feedback information, based on the HARQ feedback channel.
Abstract:
The present disclosure is related to a 5th generation (5G) or pre-5G communication system to provide higher data rates than a 4th generation (4G) communication system such as long term evolution (LTE). A method for adjusting a receive beam gain by a user equipment (UE) in a wireless communication system is provided. The method includes estimating a received signal quality value based on a reference signal received from a base station (BS), transmitting information about the estimated received signal quality value to the BS, comparing the received signal quality value with a minimum received signal quality value required for successful reception of data from the BS, and adjusting a receive beam gain to be used for data reception by turning on/off a radio frequency (RF) chain formed for each of antennas included in the UE based on a result of the comparison.
Abstract:
Provided is a distributed scheduling method and apparatus for resource allocation for Device-to-Device (D2D) communication. The method includes sending, by a Mobile Station (MS) including data to transmit, a first resource reservation message through at least one first slot among a plurality of slots constituting a resource reservation unit in a resource reservation channel; and when a second resource reservation message sent by another MS is not sensed in a slot with a higher priority than the first slot in the resource reservation unit, transmitting the data through a transmission resource unit corresponding to the resource reservation unit in a data transmission channel. The resource reservation channel corresponds to the transmission resource unit, and the plurality of slots has mutually cyclic priorities.
Abstract:
A method and apparatus for transmitting and receiving a control channel by beamforming in a wireless communication system are provided. The transmission method includes determining a plurality of pieces of control information to be transmitted on control channels and determining transmission beams for use in beamforming transmission of the plurality of pieces of control information, mapping at least one piece of beam region information indicating at least one beam region in a control channel region and the plurality of pieces of control information to the at least one beam region in the control channel region, at least one piece of control information corresponding to the same transmission beam being arranged in one beam region, and transmitting the mapped beam region information and the mapped control information by transmission beams corresponding to the beam regions in the control channel region.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to various embodiments, an electronic device over resource allocation of device to device (D2D) communication in a wireless communication system comprises at least one processor configured to generate D2D control information for the D2D communication, and at least one processor configured to transmit the D2D control information through symbols for at least one of a Physical Downlink Control CHannel (PDCCH), a Physical Uplink Shared CHannel (PUSCH), and Demodulation-Reference Signal (DM-RS).
Abstract:
A transmitter, a receiver, and a method for measuring a radio channel based on reference signals transmitted through a predetermined number of OFDM symbols by using multiple antennas in an ultra-high frequency band, and controlling a beam width of analog beams formed by transmission multiple antennas based on the measurement result. The transmitter uniquely distributes a predetermined number of analog beams among the analog beams formed by the array antenna in correspondence to each of the predetermined number of OFDM symbols, and repeatedly allocates the predetermined number of analog beams distributed for each of the predetermined number of OFDM symbols by targeting the subcarriers within the corresponding OFDM symbol. The receiver receives a channel measurement instruction message, measures a channel state based on reference signals transmitted through the analog beams allocated for respective subcarriers, and feeds the channel state measurement result back to the transmitter.
Abstract:
An apparatus and a method relieve intercell interference in a wireless communication system. In a method for operating a transmission node, a first private message encoding a portion of transmission data of a neighbor transmission node is received. Weight for canceling the first private message of the neighbor transmission node received in a intended reception node is determined. The first private message of the neighbor transmission node multiplied by the weight, a common message encoding a portion of data to be transmitted to the intended reception node, and a second private message encoding the rest of the data are transmitted.
Abstract:
Provided is a method for configuring a wireless backhaul link by a Mobile Station (MS) in a wireless communication system. The method includes acquiring System Information (SI) for each of an old Base Station (BS) which transmits a first code and a new BS which transmits a second code. The method includes transmitting a message which reports the SI for the new BS to the old BS. The method includes receiving a message indicating that the new BS discards the second code and uses the first code from the old BS, wherein the first code is a code indicating that a related BS is a BS which has been already deployed, and wherein the second code is a code indicating that a related BS is a BS which is newly deployed.
Abstract:
A method and a mobile station of transmitting beam information by a mobile station in a wireless communication system are provided. The mobile station determines whether a particular a particular event according to communication with a base station has occurred, and transmits information on at least one DownLink (DL) transmission beam among N number of DL transmission beams to the base station using a contention-based feedback channel according to a result of the determination.
Abstract:
An apparatus and a method for operating a transmission end in a wireless communication system that supports Frequency and Quadrature-Amplitude Modulation (FQAM) are provided. The method includes dividing an information bit stream into a plurality of portions, encoding each of the plurality of portions using different encoding schemes, and generating an FQAM symbol by combining result values of the encoding of each of the plurality of portions, wherein the encoding schemes are different according to at least one of an encoding order, an encoding rate, an input size, and an encoding technique.