Abstract:
A wearable device and corresponding method include producing, at a wearable device, an incoming call processing option list in response to a rejection input from a user rejecting an incoming call from a mobile terminal. The wearable device and corresponding method further transmit, from the wearable device to the mobile terminal, a result value corresponding to a gesture of the user and in response to the incoming call processing option list.
Abstract:
A wireless power transmission method includes operating at least one source resonator among a plurality of source resonators; detecting a waveform while the at least one source resonator resonates; determining, based on the detected waveform, a source resonator for wireless power transmission; and wirelessly transmitting power to a target resonator using the determined source resonator.
Abstract:
A method and apparatus are configured to recognize mobile terminals positioned within a coverage area for short range communication with a user-specific device, wherein each mobile terminal comprises identification information for the user-specific device. The method and the apparatus provide a customized service corresponding to at least one of the mobile terminals.
Abstract:
A security apparatus includes an encryptor configured to visually encrypt a target object, and a decryptor configured to decrypt an area corresponding to a decryption gesture in the encrypted target object, during a predetermined period of time.
Abstract:
A wearable device includes a first sensor configured to detect a first biosignal generated in response to a gesture performed by a user, and a second sensor configured to detect a second biosignal of the user. The device further includes a memory configured to store, with respect to at least one user, information of the first biosignal and the second biosignal, and a processor configured to initiate user authentication based on a result of determining whether the detected first biosignal corresponds to the stored information, and authenticate the user by comparing the detected second biosignal to the stored information.
Abstract:
A wireless power transmission apparatus for high efficiency energy charging, includes a resonator configured to transmit power, and a power supply unit configured to supply power to the resonator. The apparatus further includes a first switching unit configured to connect the resonator to the power supply unit, and disconnect the resonator from the power supply unit, and a controller configured to control the first switching unit based on an amount of current flowing into the resonator.
Abstract:
An apparatus and a method for wirelessly receiving and transmitting energy are provided. A wireless energy receiving apparatus in a terminal configured to wirelessly receive energy through mutual resonance between a resonator of an energy supply apparatus configured to supply the energy and a resonator of the terminal, includes an energy measuring unit configured to measure an amount of energy stored in the terminal. The wireless energy receiving apparatus further includes a control unit configured to change a state of the resonator of the terminal from a non-resonant state to a resonant state when the measured amount of energy is less than or equal to a predetermined threshold.
Abstract:
A wearable mobile device and a method of detecting a biosignal with a wearable mobile device are provided. A method of detecting a biosignal with a wearable mobile device involves determining whether a wearable mobile device is closely attached to a user; and providing a biosignal-based service in response to the wearable mobile device being determined to be closely attached to the user.
Abstract:
A device and a method for an energy sharing network may include an energy store configured to store energy; an energy transmitter-receiver configured to transmit energy and energy related information to at least one neighbor device and to receive energy and energy related information from at least one neighbor device; and a controller configured to control the energy transmitter-receiver based on a predetermined condition.
Abstract:
A method and apparatus provide for stable signal demodulation in a communication system. The method and apparatus includes including detecting an erroneous demodulation value based on backward-demodulation of received signals, using a difference between a received signal to be demodulated and a preceding signal of the received signals and correcting the error demodulation value. Alternatively, backward-demodulation is used to confirm received signals.